

 Rudolf Kaehr Februar 2, 2007 2/24/06

DRAFT

From Ruby to Rudy 1

FFF rrrooommm RRRuuubbbyyy tttooo RRRuuudddyyy

FFF iii rrrsss ttt sss ttteeepppsss tttooo DDD iiiaaammmooonnnddd iiizzzeee RRRuuubbbyyy

 by Rudolf Kaehr

ThinkArt Lab Glasgow January 2006

 Rudolf Kaehr Februar 2, 2007 2/24/06

DRAFT

From Ruby to Rudy 2

DDDEEERRRRRR IIIDDDAAA’’’SSS MMMAAACCCHHH IIINNNEEESSS PPPAAARRRTTT
III III III

BB YY TT EE SS && PP II EE CC EE SS

ooff

PPoollyyLLooggii ccss ,, mm--LLaammbbddaa CCaall ccuu ll ii ,,
CCoonnTTeeXXttuurreess

From Ruby to Rudy

First steps...to Diamondize Ruby

 by Rudolf Kaehr

ThinkArt Lab Glasgow January 2006

"Interactivity is all there is to write about:

it is the paradox and

the horizon of realization."

 Rudolf Kaehr Februar 2, 2007 2/24/06

DRAFT

From Ruby to Rudy 3

From Ruby to Rudy

First steps...to Diamondize Ruby

Some Motivational Remarks

1 Contextural Programming

1.1 What is Contextural Programming? 1
1.2 Shifts in terminology: From instantiation to dissemination 4
1.3 Poly-paradigm of contextural programming 6
1.4 Poly-topics in contextural programming 6
1.5 Main operational mechanisms between contextures 6

2 Why should we need contextural programming?

2.1 A general framework for distributed rationality 7
2.2 Blind Spot Problem: No reflectionality 9
2.3 Blindness for the Others: No interactionality 10
2.4 Thus, no interventionality 10
2.5 And no interlocutionality 11

3 General design of a contextural programming language

3.1 General tectonics of ConTeXtures 12
3.2 General epistemic activities of ConTeXtures 13
3.3 Bracket formulations of ConTeXtures 14

4 What Contextural Programming is not?

From Ruby to Rudy

First steps...to Diamondize Ruby

1 Conceptual modeling between IS and AS

1.1 The classic view 17
1.2 The probabilistic view 17
1.3 The exemplar view 17
1.4 Relation between classes 18
1.5 AS-Relation 18

2 Polysemy: Conceptual modeling

2.1 Polysemy in is-abstraction mode 19
2.2 Polysemy in as-abstraction mode 20

3 Dimensionality of AS-abstractions

3.1 Sentence vs. textures 23
3.2 As-abstraction and object-schemes 24

4 Contextu(r)alizing the AS-abstraction

4.1 Modus I: A

name is a name

 in a single contexture 25
4.2 Modus II:

Statements as statements

 in a contexture 26
4.3 Modus III: A

name as a name

 in a contexture 27
4.4 Modus IV: A

name as a name

 between contextures 28
4.5 Modus V: A

name as a contexture

 in a polycontexturality 29
4.6 Example of a transcontextural as-abstraction 30

5 Object-Schemes as Morphograms

5.1 Diagrams of equality, sameness and difference 32
5.2 An example: 3-fold objectionality 33
5.3 Morphogrammatic evolution of object-schemes 34
5.4 Morphogrammatic devolution of object-schemes 34
5.5 Morphogrammatic operations on object-schemes 35
5.6 AOP-strategies onto Morphograms 36

6 AOP-style: A multi-paradigm view?

6.1 AOP-Strategies 37
6.2 Multitudes, simultaneity and profundity 39

7 AOP-strategies onto PM

7.1 Overview of AOP 44
7.2 A general sketch of mapping AOP onto PM 45

8 Abjects: Weaving and mediation

8.1 From Objects to Aspects, Metapattern and Contextures 50
8.2 Metapattern approach 51
8.3 Aspect-oriented approach to bank account 51

 Rudolf Kaehr Februar 2, 2007 2/24/06

DRAFT

From Ruby to Rudy 5

9 Towards a polycontextural approach of modeling

9.1 Heterarchy UML diagram 53
9.2

Hierarchical decomposition vs. heterarchic thematization 55

10 Diamond Strategies of Programming

10.1 Preliminary steps 58
10.2 Pattern of paradigms for the complexion object-aspect-abject 62
10.3 Augmenting complexity of Thematizations 63
10.4 Proemiality between aspects and objects 66

11 Rudy; some Dissemination of Ruby

11.1 Conceptual graph of Ruby 67
11.2 Example of a 3-contextural dissemination of Ruby 69
11.3 Global and local structure of disseminated Ruby 70
11.4 Transjunctional constellations and tableaux proofs 81

12 Chiasms: Contradiction vs. Mediation in Polysemy

12.1 Chiasm in conceptual modeling 88

13 Limits of the Idea of Objects 90

13.1 Why linearizations? Some citations 90
13.2 Paradox by design and paradox by construction 92
13.3 Modeling the main conflict 93
13.4 Dialectics of linearization, evolution and mediation 96

14 Chiasm of Deliberating Self-modification for Ruby

(3)

15 Distribution of Ruby as AOP and AOP as Ruby

Time and Computation

1 Linearity of computational time

2 A time-matrix for complex object-schemes

2.1 Temporal structures of cognitive systems 3
2.2 General tabular time-matrix 4
2.3 Classification of temporal events 6

Contextural Programming

 Rudolf Kaehr Februar 2, 2007 3/24/06

DRAFT

From Ruby to Rudy 1

Some Motivational Remarks

1 Contextural Programming

1.1 What is Contextural Programming?

Essentials of classic programming

"A powerful programming language is more than just a means for instructing a computer to
perform tasks. The language also serves as a framework within which we organize our
ideas about processes. [...]
Every powerful language has three mechanisms for accomplishing this:

primitive expressions

, which represent the simplest entities with which the language is con-
cerned,

means of combination

, by which compound expressions are built from simpler ones, and

means of abstraction

, by which compound objects can be named and manipulated as units.
In programming, we deal with two kinds of objects: procedures and data." Sussman, p. 4

In terms of the lambda based proto-language ARS:

"

Abstraction:

 Give something a name.

Reference:

 Reference an abstraction by name.

Synthesis:

 Combine two or more abstractions to create a new abstraction." Loczewski

What do we understand by

"contextural programming"?

Programming in the mono-contextural sense, that is, programming as we know it, is
characterized by the linguistic operations of abstraction, reference and synthesis as
Loczewski puts it in the tradition of Abelson/Sussman.

What is not mentioned in the characterization of classic programming is the unique-
ness of the programming system. There is, conceptually, one and only one program-
ming language. As there is one and only one logic, arithmetic, mathematics. This not
contradicting the 10000+1 different programming languages on the growing market.
They are all introduced as being singular, conceived in the framework of universal com-
putability. Computation, organized by such a conception of programming languages,
is, in a general sense, information processing or message passing.

In contrast, polycontextural programming starts, as the name intends, with a plurality
of contextures. Each contexture is giving place to the realization of a located program-
ming language and its conception of computability.

Thus, the first observation is the fact that classic programming is realized inside of
one and only one contexture. As a consequence classic programming languages are
blind to this fact and are not able to discover their computational environment. This can
be called the

Blind Spot

 of mono-contextural programming. With the fact of the Blind
Spot,

reflectionality

 and

interactivity

 are excluded for systematic reasons.
Multitudes in classic programming languages occur as the multitude of programming

styles

 (paradigms) and

topics

 (List, Boolean, Numeric, etc.) and their methods of ma-
nipulations.

Because it is involved in the activity of

thematization

, in contrast to

abstraction

, the
strategy of contextures is always engaging a multitude of disseminated contextures, i.e,

poly-contexturality

in contrast to

 mono-contexturality

.

Contextural Programming

 Rudolf Kaehr Februar 2, 2007 3/24/06

DRAFT

From Ruby to Rudy 2

Contextural programming is designing the dissemination of contextures.
Computation, organized by such a conception of contextural programming, is basi-

cally not concerned with information processing or message passing. But with the
mechanisms of

togetherness

 of contextures which is realized as

interactionality

 and

re-
flectionality

, but also with

interventionality

 and

interlocutionality

. Traditional terms like
"interaction" or "reflection" are used for message passing, say in MAS, and are thus
misleading in a polycontextural framework. If used, then they are understood only as
linguistic abbreviations of the contextural terms.

Togetherness of contextures is emphasizing the

loci

 or positions (positionality) con-
textures are occupying/enabling in the graphematic game of inscriptions. Only locat-
ed contextures can be mediated and distributed. Locatedness and togetherness of
contextures are enabling the mechanisms of dissemination, i.e., distribution and medi-
ation as polycontextural procedures. Locatedness and togetherness, as such, are char-
acterized and involved in the general theory and mechanism of loci, i.e., of morpho-
and kenogrammatics.

In other words, togetherness is a characteristics of living systems. The main criteria
of contextural programming, therefore, are not derivability, truth and computation but
togetherness and liveliness of co-existing systems.

What is meant by

contextures

?

The main concept in ConTeXtures obviously is "contexture". It could be said that a
contexture is the context of all possible contexts of a language. Like a universal domain
in first order logic a contexture has no limits. With this, we are in the middle of para-
doxes and antinomies. Because what we call the context of all possible contexts, a sin-
gle contexture, is only one of the plurality of contextures as it is defined by
polycontexturality. It even makes not much sense to speak about a single contexture. In
other words, the ultimate generality of contexture is given by the universal application
of the Excluded Middle (TND). Classical thinking happens in the framework of one con-
texturality, thus it is called mono-contextural. But it is christened with mono-contextural-
ity only from the outside of it, that is, from the position of polycontexturality. On the
other hand, a single contexture is not a simple unity, a basic contexture like an atom,
but stands relative to a compound contexture consisting of a plurality of contextures.
As Gunther puts it:

"It cannot be too strongly emphasized that the distinction between
elementary contexture and compound contexture is relative."

Contextural programming, therefore, is not based on "primitive expressions". Con-
textures are not the atomic elements of a referencing action, like in classic program-
ming, but ambigous "building-blocks" of dynamic complexity, interchanging between
elementarity and compoundedness. Primitive expressions are involved in linear and hi-
erarchic orders, contextures are entangled in a heterarchic and tabular game guided
by the proemial relation (chiasm).

Dissemination

 of contextures is realized as the complementarity of distribution and
mediation of contextures.

The kind of distribution is guided by the architectonics of the situation to be thema-
tized for programming. The architectonics of programming systems are defined by

complexity

 and

complication

 of the design and their

linear

,

tabular

 or

circular

 organi-
zation.

Classic programming paradigms are based on abstractions. Transclassic program-
ming paradigms are based on

thematizations

. Thematizations are complex contextural
abstractions which are placing at each contexture classic, say lambda, abstractions.

Contextural Programming

 Rudolf Kaehr Februar 2, 2007 3/24/06

DRAFT

From Ruby to Rudy 3

Interpretations of architectonics and scenarios

On a first level of introduction, contextural programming can be considered as the
programming of the complementary aspects of

reflectionality

 and

interactionality

 of
disseminated contextures as a specific realization of the complexity/complication of
the architectonics. Higher designs of complexity/complication can be interpreted as

intervention

 and interlocution of computational systems.
Therefore, contextural programming is considered with the computational rules and

laws between disseminated contextures. Each contexture is giving space for a full clas-
sic programming language. Contextural programming is developing the inter-compu-
tational situations of disseminated programming languages of different styles and
topics.

To concretize the dissemination of different programming languages a step by step
mediation of their distributed components has to be done. Within the framework of dis-
seminated contextures, based on a chosen architectonics, implying complexity and
complication of the polycontextural compound, all the conceptual components of the
different disseminated programming paradigms have to be mediated on the their prop-
er systematic levels.

Mediation pattern: Structure + Dynamics = Structuration

First, structure: All three main mechanisms of the distributed languages, which are
structured by the order relations, have to be mediated in the mode of the non-metamor-
phic as-abstraction, i.e., in a one-to-one correspondence in the sense of the coinci-
dence relations of proemiality:

1. the mechanisms of abstraction as abstraction,
2. the mechanisms of reference as reference, and
3. the mechanisms of synthesis as synthesis.

Second, dynamics: All three main mechanisms of the distributed languages have to
be involved into the creative game of metamorphic as-abstractions, i.e., thematiza-
tions, including exchange relations:

4. Abstraction as reference,
5. Abstraction as synthesis,
6. Referencing as abstraction,
7. Referencing as synthesis,
8. Synthesis as abstraction, and
9. Synthesis as reference.

This mediation pattern of the main
mechanisms of programming can itself be iterated, depending on the complexity/com-
plication of the architectonics of the programming system.

The mediation pattern can be considered as a second-order mechanism of program-
ming language construction: the language of the language, i.e., ARS(ARS).

Then, polycontextural programming is: DISS(ARS)(m, n).
The first mechanism of dissemination is constituting the structure of a complexion.The

second is constituting the dynamics of complex programming systems. Both together,
as a complementarity, emphasizing the dynamics of structures and the structure of dy-
namics, are called structuration.

reference

synthesis

1

abstraction

synthesis

reference

1

abstractioncoincidence

order

exchange

Contextural Programming

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 4

1.2 Shifts in terminology: From instantiation to dissemination
Abstraction vs. thematization

Abstraction is the process of identifying compound expressions or objects as units.
Thus, abstraction is naming identified objects by giving them a unique name. Abstrac-
tions as identifiers are realized by is-abstractions in contrast to as-abstractions of the-
matizations. Is-abstractions are working in the linguistic model of sentences and
propositions and can be repeated at each contextural locus, while as-abstractions are
realized in the medium of inter-textuality.

As a generalization of the conceptual abstraction we have to develop a shift to the
textual mechanism of thematization. Linguistically, thematizing is not referring but evok-
ing. Evocation (lit. Webster, ’imaginative recreation’) is a hermeneutic process, thus
creative and risky, not identifying but interpreting textures. Interpretations are depend-
ing on view-points, represented as contextures, and their interlocking mechanisms.

Thematizing, as an epistemic activity ("abstraction") of thematizing the world hap-
pens as plurality; there are always a multitude of viewpoints of thematizing. These
viewpoints which opens up contextures are not isolated events, they are interacting
and being together, they are mediated and the rules how to move from one point of
view to another have to be given. Thematization as interpretation and/or thematiza-
tion as identification. Identification, again is, "giving something a name", that is, iden-
tification is abstraction, abstracting identity, an identical property, out of complexity
and diversity. Abstraction as identification is the sense of and behind the lambda cal-
culus. To identify is to iterate the same as the identical. And this kind of identification
determines the kind of iterability of the operations.

What is abstraction for the lambda calculus is identification for combinatory logic.
Reference vs. evocation

Referencing something is to select it out of other entities. Such referenced entities are
belonging to their corresponding contexture and are basically "primitive expressions",
instances, as elements of further combinations (synthesis) of the language.

Contextural programming is electing, i.e. evocating contextures and is not primarily
selecting pre-given atomic terms. Contextures are not the atomic elements of a refer-
encing action but imaginative and ambivalent "building-blocks" of dynamic complex-
ity, interchanging between elementarity and compoundedness. Primitive expressions
are involved in linear and hierarchic orders, thus founding selection, contextures are
entangled in a heterarchic and tabular game, thus founding election. Primitive expres-
sions are involved in synthesis, contextures are entangled in dissemination

Synthesis vs. mediation

Synthesis is building compound expressions out of simple expressions. The structure
of such a synthesis is a linearly ordered concatenation of atomic elements. The compo-
nents of synthesis are happening in the framework of an established contexture. Syn-
thesis is an intra-contextural operation, while mediation is a trans- and inter-contextural
mechanism which is operating between distributed contextures. In polycontextural sys-
tems, mediation and distribution are complementary terms.

To put both activities together, the term dissemination (Derrida) is used. But dissemi-
nation is not a simple term of combining two other elementary terms, but an irreducibly
ambivalent and antinomic non-term. Like contextures, dissemination is not given or per-
ceptibly/thinkable in a single act of evidence (Husserl). The antinomy is created by the
simultaneous dissimilarity of the distributed sameness of contextures. "Dissemination
'is' (about) the play of meanings; an unequivocal meaning cannot be assigned to it."

Contextural Programming

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 5

 "Dissemination 'is' a scattering of semen, seeds and semes, semantic features. 'We are
playing on the fortuitous resemblance ... of seme and semen. There is no communication of
meaning between them. And yet, by this floating, purely exterior collusion, accident produc-
es a kind of semantic mirage: the deviance of meaning, its reflection-effect in writing, sets
something off ... it is a question of remarking a nerve, a fold, an angle that interrupts totality:
in a certain place, a place of well-determined form, no series of semantic valences can any
longer be closed or reassembled ... the lack and the surplus can never be stabilized in the
plenitude of a form' "(Derrida, Positions, p.45-6).

Position vs. distribution

The positioning of a formal system or programming language is produced by the de-
cision of its introduction. The language with its introduced definitions and features is
positioned by uniqueness. As a formal system a programming language is defining its
uniqueness and positionality by its meta-theoretical characteristics. In fact, it fails to do
so because it is not able to motivate the motivation of the decision. There is no working
self-definition or self-motivation of a formal language (Gödel). Motivations for the de-
cision toward the positioning of the formal systems are not parts of the systems. They
are outside, somewhere in the tradition and ruled by specific interests of the historic
formation of technological culture.

Distribution of contextures is designed by the architectonics of the mediated formal
languages. In this sense, classical positioning of a language is a singular distribution,
producing a punctual one-element architectonics.

In analogy to the positional system of number theory it could be said that contextures
are distributed over a complex topology of different positions, loci, of a tabular nota-
tional system.

Contextural Programming

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 6

1.3 Poly-paradigm of contextural programming
Uni-paradigm

Often the definition or choice of a paradigm is related to a privileged data type out
of possible topics. But this is a mere coincidence between a kind of abstraction and
the privileged topic. Paradigms are based on the basic abstraction of the programming
language and are supported by the way it is realized. Thus, paradigms are a kind of
a style of programming. Depending on the tasks, styles can be changed and a couple
of styles, applied together is introducing the multi-paradigm approach.

Multi-paradigms

Multi-paradigm programming is based on a general abstraction and a introduction
of the programming language which is broad enough to allow different programming
styles and therefore different decisions which data type and style is privileged to other
implicit privileges and decisions of styles. But each decision is singular at its systematic
place. The multi-paradigm approach allows to change paradigm to solve different
tasks in a save way. This kind of switching from one paradigm to another is sequential
and is not realized in a parallel or concurrent manner at a systematic place of a con-
cern or task. Different paradigms in multi-paradigm programming exist in separation
and are not mediated together to build a complexion, because their concerns, tasks,
objects can be treated in a sequential way, without the need of any simultaneity.

Poly-paradigms

Poly-paradigm programming takes into account the possibility of a simultaneous plu-
rality of different programming styles. Thus, an object can be thematized at once as
belonging to different topics and styles. Such an computational object thus is not a sin-
gularity but a dynamic complexion.

Uni-paradigm and multi-paradigm approaches are based in a common singular pro-
gramming framework. Both are therefore mono-contextural. The poly-paradigm ap-
proach is essentially involved in the plurality of different disseminated frameworks of
programming, thus irreducibly polycontextural. It is based on the polycontexturality of
complex programming and not on its styles or topics.

1.4 Poly-topics in contextural programming
Poly-topics are disseminated topics. They are specifications of the general complex

objects, c-obs. Topics are specified as the data types or sorts, like Boolean, Numeric,
List, Relational, Class, etc. and reflectional/interactional realizations. Replications of
the same topics in different contextures are called mono-form topics. Otherwise poly-
form topics. Topics are not identities per se, they can be involved in transformations by
the process of interactional/reflectional metamorphic abstractions.

1.5 Main operational mechanisms between contextures
Between disseminated contextures of a contextural complexion (compound) different

transformational mechanisms can be introduced.
The main transformations between contextures are collected by the set of super-op-

erators, sops = {id: identity, perm: permutation, red: reduction, repl: replication, bif:
bifurcation}. An operator spec for specify is introduced, additionally to the general op-
eration identify, for reflectional replication of contextures.

Super-operators may play two roles. One as transforming operators and one as
meta-instructions. Meta-instructions play a similar role as define or lambda in the dis-
tributed calculi. Thus, meta-instructions are introduced as the operators of thematiza-
tion thematize, collected as {identify, permute, replicate, reduce, bifurcate, specify}.

Why should we need contextural programming?

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 7

2 Why should we need contextural programming?
"It should now be understood if we say that the classic, two-valued logic describes our sys-
tem of formal rationality as an undistributed order of concepts. This is done by vigorously
excluding any reference to the thinking subject.

To sum it up: A non-Aristotelian or trans-classical logic is a system of distributed rationality.
Our traditional logic presents human rationality in a non-distributed form. This means: the
tradition recognizes only one single universal subject as the carrier of logical operations. A
non-Aristotelian logic, however, takes into account the fact that subjectivity is ontologically
distributed over a plurality of subject-centres. And since each of them is entitled to be the
subject of logic human rationality must also be represented in a distributed form."
Gotthard Gunther, The Tradition of Logic and The Concept af a Trans-classical Rationality.
http://www.vordenker.de/ggphilosophy/gg_tradition-of-logic.pdf

Even if there is no need at all for contextural programming and for polycontexturality
in general, the option to discover it has been opened up to the textu(r)al play. War
games have engineered programming to great historic importance. The proposed par-
adigm is developing first steps of programming as the joy of the cosmic life-game.

2.1 A general framework for distributed rationality
Agents and multi-agent systems in ConTeXtures are studying the architectonic aspect of

multi-agent systems as the conditions of interactional, reflectional, environmental and com-
putational behaviors of agents including the structure of Interaction, Organization and Envi-
ronment of Agents in multi-agent systems (MAS).

To adapt a more familiar wording I will try to put, in a very first step, the designed poly-
contextural concepts in a framework similar to the well known theories of agents, like MAS
(Pfalzgraf, Wooldrige) and MIC (Gouaich, Zambonelli).

"According to Demazeau [Dem95] a multi-agent system can be described with four main
concepts: Agent, Interaction, Organisation and Environment." (Zambonelli)

An agent in ConTeXtures is a subject (actor, entity) with an environment realizing that in
its environment there are other subjects with their own environments containing himself in
their environment. Thus, an agent as a subject is both at once an agent and part of an en-
vironment of an agent. An agent has an environment and is part of an environment. With
this, a theory of agents in ConTeXtures starts conceptually not with one but with at least two
agents in the game. This duplicity of agents is not defined by superposition of actors but as
architectonic simultaneity of interacting agents.

Architectonics
Architectonics is prior to the quadruple of (agent, interaction, organization, environment)

and is attempting to conceptualize the structure of togetherness of subjects in societal sys-
tems. The architectonic conditions for agents building a societal system is not yet guarantee-
ing successful communication, co-operation, interaction, etc. on an informational level but is
conceived as its pre-conditions.

Further more, an agent has an inner and a outer environment. In his outer environment
he confronts other agents and an environment neutral to agents. In his inner environment he
reflects the outer environment in its two ways as neutral and as actional. He also reflects in
his inner environment his own behavior to his environment, especially to his interactional en-
vironment, that is, to other agents and their behaviors.

Coalitions of agents to societal systems are architectonically super-additive. The cooper-
ation of two agents is producing a new interactional space (contexture) which is modeling
the difference and mediation of the two acting agents as the realization of cooperation.
Two co-operating agents are realizing cooperation as a third actional space (object, con-
texture).

http://www.vordenker.de/ggphilosophy/gg_tradition-of-logic.pdf

Why should we need contextural programming?

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 8

Modi of actions
The aim of interaction is to change the inner environment of an agent by changing its

outer environment. Thus, interaction is a change of model at the place of the neighbor agent.
The aim of reflection is to change the inner environment of the reflecting agent itself. (Self-

reflection, Introspection, Memory) Thus, reflection is a change of model at the place of the
agent itself. This change is purely structural and neutral to specific informations.

The aim of intervention is to change the inner environment of an agent by changing its
behavioral environment. (Coaching, Consultation, Re-programming)

The aim of anticipation is to change the inner environment of an agent by confronting
him with the inner environment of the acting agent. (Motivations, Desires, Emotions)

Rationality and Super-additivity
Each agent has its rationality and computability. The rationality of multi-agent systems is

super-additive. Rationality of an agent can be modeled by its logic. Thus, combining logics
for MAS is super-additive. Topics of super-additivity don’t exist in MAS and Combining Log-
ics. Exceptions can be found in the work of Pfalzgraf and Beziou.

Movements in ConTeXture are defined as the processes of coalition building by different
agents resulting in a societal and super-additive compound structure.

Questions of time and space of activities of agents in the sense of temporal and spacial
attributes enters secondary into the game of interactionality/reflectionality of agents.

Actions of agents in societal architectonics take place, are situated and thus, agents are
occupying a structural place, a locus, for their realization.

Inner and outer environments are mirrored, represented by models, realized by the
agents, occupying a place in the actional space (contexture) of an agent. The actional space
of an agent is pre-spacial and pre-temporal.

Togetherness/strangeness, acceptance/rejection are the main categories or rationals of
a theory of interacting agents.

Proemiality of interaction and reflection
The general matrix of interactivity and reflectionality is not simply be pre-given but has to

be established. The rules of the preconditions of the matrix are defined by the proemial re-
lation ship. Also the disolvement of togetherness is described by the rules of proemiality.

To be able to realize a concrete interaction the proemiality or chiasm of inside/outside
of at least two agents has to be fulfilled. Second to the exchange relations of inside/outside
in respect of agent1 and agent2 a coincidence or correspondence relation has to be real-
ized. The correspondence which has to be realized is the correspondence between the mod-
el of agent1 of agent2 and the model of agent2 of agent1. The coincidence relation has to
guarantee that there is a correspondence between inner models and not between something
else. The correspondence has to be from model to model. A second correspondence has to
be realized in a similar way between agent1 and agent2, that is, between agents and not
something else. There is no correspondence between, say, an agent and an inner model of
an agent. Between agent and model an exchange relation has to be realized.

And, obviously, for each agent the existence of an order relation between inside and out-
side, that is the inner model of an agent and an agent as an entity of an outer environment,
has to be established.

Blind Spot Problem and the Otherness of the Others

Non-distributed rationality, i.e., mono-contexturality in logics and programming par-
adigms, is producing at least two crucial shortfalls: lack of architectonic reflectionality
and interactionality as consequences of the structural inability of classic thinking to rec-
ognize the Blind Spot Problem of its mono-contexturality and to accept the Otherness
of the Other. Excluding both, architectonic reflectionality and interactionality, there is
no access to an understanding of systemic intervention and anticipative interlocution.

Why should we need contextural programming?

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 9

2.2 Blind Spot Problem: No reflectionality

Reflectionality comes into the general
game if we thematize the relationali-
ty or operativity of the proemial con-
struction from the point of view of an
internal description/construction. An
internal description has to consider
all given concepts of a construction
and to re-construct the build construc-
tion out from the inside. An external

description is realized by an external observer of the construction knowing the rules of
construction. A full polycontextural description has furthermore to take into account the
complementarity of internal and external descriptions of its constructions.

It reads as follows:
the operationality between operator and operand from the view of the operation,
the operationality between operator and operation from the view of the operand,
the operationality between operand and operation from the view of the operator.
And:
the operationality between operator and operand from the view of the position,
the operationality between operator and operation from the view of the position,
the operationality between operand and operation from the view of the position.

And so on.

All programming paradigms are conceived as a single, mostly highly complex and
mixed unity, thus founded in uniqueness, represented as "1". This epistemological and
semiotic closeness of the unique language is producing a special kind of double blind-
ness: the blindness of its uniqueness and the blindness for its environment.

The blindness for its uniqueness is called the Blind Spot of the system. The system is
not aware of its uniqueness. But even more, from a morphogrammatic point of view,
the system is not aware of its location or of the fact of its locatedness. It is not realizing
that it is occupying a place, i.e., a locus.

This monolithic uniqueness is called the mono-contexturality of the system. Blindness
for itself is excluding the possibility for reflectionality, excluding self-observation, intro-
spection and self-thematization.

The ability of an actional system to perceive and realize reflectionality is defining its
reflectional abstraction.

operator

operand

operation

1

operator

operation

operand

1

Why should we need contextural programming?

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 10

2.3 Blindness for the Others: No interactionality
Blindness for the Others is excluding togetherness. In technical terms interactivity, co-

operation and co-creation are not accessible in this world-view.
Interactivity, which is not changing
the structure of architectonics, can be
seen as a kind of reflectionality, re-
flection-onto-others. In other words,
with a stable architectonics which is
excluding metamorphosis and evolu-
tion/emanation, both concepts are
complementary. That is, reflectionali-
ty can be seen as an interactivity in

the modus of replication into itself. Both activities are complementary to each other and
have to be distinguished properly. In polycontextural logic interactivity is mainly real-
ized by different kinds of transjunctions. But interactivity is a general concept and is
not reduced to logical operations only. In the terminology of super-operators of Con-
TeXtures interactivity is represented by the operator "bifurcation".

Interactional abstraction

Interactivity is not based on communication as information processing or message
passing (Paul Dourish). It can be described as the action of addressing an addressee
which is able to accept the addressing by its own addressable structure. After having
been addressed and the addressing is accepted by the addressed and the addresser
has recognized the acceptance of being addressed and the addressing is thus estab-
lished, information can be exchanged between agents in the sense of processual com-
munication (MAS, MIC).

Such a mutual action is realizing the interactional abstraction.

2.4 Thus, no interventionality
Without reflectionality and interactionality there is no interventionality and interlocu-

tionality.
Interaction as reflection: reflectional interactivity (intervention)
Reflectional interactivity can be understood as an interaction unto the reflectional pat-

terns of a neighbor agent or into the acting agent itself, therefore it can be called in-
tervention and self-intervention.

Interventions are anticipating the behavior of an agent and try to influence it and to
change its plans and motivations maybe to avoid conflicting situations.

Intervention is re-programming the
reflectional system of the neighbor
system and not the system itself. The
self-image of the neighbor system is
re-programmed and not the system it-
self as it appears in an interactional
context to the interacting agent and
also not as the reflectional image of
the neighbor in the internal environ-

ment of the agent.

operator

operand

operation

1

operator

operation

operand

1

operator

operand

operation

1

operator

operation

operand

1

Why should we need contextural programming?

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 11

Interventional abstraction

Because there is no direct access to the programming structure of another agent the
perceived actions of the agent has to be analysed and the structure of the behaviorial
pattern has to be discovered and abstracted from its communicational contents. With
this reflectional knowledge about the behavioral patterns of the co-operating agent ac-
tions can take place with the intention to change the structure of this behavioral pat-
terns. Thus, interventionality of an agent towards another agent is based on indirect
reflectional interactions.

2.5 And no interlocutionality
Reflection as interaction: interactional reflectionality (interlocution, anticipation)

Interactional reflectional can been
seen as a mutual interaction between
two reflectional agents. Plans, moti-
vations and strategies are directly in-
volved with the aim to interact or
change each others intentions and
self-interpretations.

Interlocutional abstraction

The interlocutional abstraction is uncovering the dialogical and polylogical structure
of a conversation between reflectional/interactional systems. This structure is the invari-
ant pattern which is abstracted, discovered, identified and named, out of the commu-
nication process. Thus interlocutional patterns have to be filtered out of the stream of
information to be recognized and applied for interlocutional interactions. Interlocution,
thus, is a highly reflectional interaction of togetherness of anticipating agents.

operator

operand

operation

1

operator

operation

operand

1

General design of a contextural programming language

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 12

3 General design of a contextural programming language

3.1 General tectonics of ConTeXtures
The tectonics of the layout of ConTeXtures can be introduced as the following heter-

archic order of language levels.
1. General polycontextural positional matrix

Is studying the general architectonics of polycontexturality designed by its complexity
(m) and complication (n). Excluding the dynamics of evolution and emanation of the
design. There are types of matrices: under- (m<n), over-determinated (m>n) and bal-
anced (m=n) matrixes. We are restricting ourselves in this study to balanced matrices.

The general matrix is represented as a structural matrix but also as a diagram, em-
phasizing the procedural aspects of the constructions.

2. General templates of the matrix
Is studying the general templates or scenarios of the distribution of systems over the

matrix including its interactivity and reflectionality as interpretations of complexity and
complication, here restricted to the balanced case. Other categories of the templates
are intervention and interlocution.

3. General patterns of the templates
Is studying the structure of the general patterns of the templates of the matrix involv-

ing the distribution of the super-operators as specifications of the types of interactivity
and reflectionality of the general design.

4. General configurations of the patterns
Is studying the general configurations the different programming styles (paradigms)

and the multitude of topics (data structures, sorts, types).
 Because the different programming paradigms are realized simultaneously and at

once in different contextures, this dissemination of programming paradigms in ConTeX-
tures is called poly-paradigm. In contrast, multi-paradigms are known in mono-contex-
tural programming languages as the possibility to deal with different programming
styles in one language.

Additional, the general distribution and mediation of the specific topics (Boolean,
Numeric, Symbolic, etc.) of the patterns has to be studied. Repetitions of the same top-
ics in different contextures are called mono-form topics. Otherwise poly-form topics.

5. General constellations of the configurations
Is studying the combinations of the concrete realizations or instances of topics as op-

erators and operands, functors and values, etc. in different contextures. E.g., Boolean:
(and, or, trans), lists: (nil, cons, car) or poly-topics: (and, cons, one).

6. General derivations of the constellations
Is studying the intra- and trans-contextural derivations and computations of the com-

plex contextural programming system.
Control structures may depend on styles and topics.

General design of a contextural programming language

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 13

3.2 General epistemic activities of ConTeXtures
sketch-horizons:
The operator samba is sketching or designing the horizon of the computational con-

stellation, that is, the general structure of the avouched textuality under consideration.
As lambda is the operator for abstraction, samba, i.e, samba’s, is the operator for the-
matization. Samba’s is, as a term and an operator, at once, a singular unity and split
into its multitudes. Designing the horizon is including the complexity and complication
of the designed system. One of the relations between complexity and complication can
be classified as over-, under- and balanced.

 design-architectonics:
It is crucial to know how the fundament of the architectonic is conceived or build. Its

graph-combinatorics can be a constellation from a linear to a star order, thus, linear,
tabular and circular. Designing a horizon of programming is realizing the demand for
reality construction by programming as a stronger approach than problem solving.

thematize-scenarios:
The super-operators are defining the interplay between different contextures of the

designed scenario. The main modi of this interplay are interactivity and reflectionality
and locally iterativity (computations). Other dimensions, like intervention and interlocu-
tion (anticipation), are possible, but are not explicitly included in this sketch.

A further concretization of the language is given by the programming styles chosen
and the selected topics.
•styles: The different programming styles or paradigms, distributed over the mediated
contextures, have to be addressed. The chosen styles can be in mono- or poly-style
constellation. Styles are the paradigms of functional, imperative, object-oriented, con-
textural, logical and reflectional programming, etc.
• topics: The different operators, distributed over the mediated contextures, have to by
thematized, taken into consideration. The operation thematize is defining the topics
(mono- and poly-topics) to be brought into the scope of programming. Topis are the
sorts of the language, like Boolean, Number, Symbolic, Class, Relation, etc.
•contextures: Contextures can be named reflectionally and interactionally, thus intro-
ducing some kind of self-reference into the contextural programming system.

identify-contextures:
Elementary contextures with and without interactive and reflectional connections to

other intra- and trans-contextures are focussed. Identify-contextures is a function which
is decomposing the complexity of the polycontextural situation given by the thematiz-
ing operation into its intra- and trans-contextural parts or modules. To each isolated or
interacting contexture corresponds intra-contexturally a Lambda Calculus based ARS-
system inheriting the reflectional and interactional distribution of the contextures.

local ARS systems:
define-operations: define <Name of Abstraction>

• Abstractions may be given a name explicitely, matching the general human understanding
of `abstraction' as `to give something a name'.
• Abstractions may contain more than one lambda expression in the body to be evaluated.

abstract-functions: lambda <List of Parameters>
• Applications may contain more than two lambda abstractions including several arguments
passed to the operator.

propose-statements: {Statements}

General design of a contextural programming language

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 14

3.3 Bracket formulations of ConTeXtures
Full design of ConTeXtures

Short design of ConTeXtures

Intra-contextural as-abstractions

ConTeXtures

horizon (m,n)sketch

complexity

co

-

mmplication

over

under

balanced

-

-

build

linear

t

- architectonics

aabular

circular

thematize

- scenarioss

reflectional

interactional

interventional

intterlocutional

choose

fu

– styles

nnctional

imperative

object

logical

contextura

�

ll

select

Boolean

num

– topics

eeric

symbolic

class

relational

reflectional

actiional

identify

�

-

contexxtures

operations

function

define

abstract

-

- ss

statementspropose -{ }

ConTeXtures

horizon

archi

(m,�n)sketch

build

−

−

ttectonics

scenarios

cont

thematize

identify

−

−

eextures

operations

functio

 define

abstract

−

− nns

statementspropose −()

thematize

ide

�intra - statements - as - statements

nntify

define

�

�

contexture

< Name�of�Abstractionn >

< List�of�Parameters >

< Statement >1
1

lambda�

��as�< Statement >

< Statement >�as�< Stateme
1
2

2
1 nnt >

�����.�.�.�.�.�.

< Statement >�as�< Sta

2
2

n
1 ttement >n

2

thematize

identify

�intra - name - as - name

contex� tture

< (Name�of�Abstraction)

idefine� �

 as

 (Name�of�Abstra

�

cction) �>

< List�of�Parameters >

j

ilambda�

������������������

< Statement >

< Statement >

�����.

1

2

��.�.�.�.�.

< Statement >n

lambda�

����

< List�of�Parameters > j

��������������

< Statement >

< Statement >

�����

1

2

..�.�.�.�.�.

< Statement >n

What Contextural Programming is not?

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 15

4 What Contextural Programming is not?
 "Only non interesting problems might be formulated unambiguously

and solved completetly." Henry Poincaré

Mathematics vs. poly-mathematics

Strictly, contextural programming is not a part of classic mathematics, nevertheless it
depends strongly on its established techniques and methodologies which are used/
abused and transformed for polycontextural reasons. Thus, the project of contextural
programming is in no sense against anything proved useful and established in classic
mathematics and programming theories and languages. Contextural programming
tries to surpass conceptual limits of the known approaches, simultaneously from the in-
side and the outside of classic paradigms of thinking, formalizing and programming.

Category theory

Also category theory is able to translate between the multitudes of different program-
ming activities and language designs and to act as a unifying organizational model,
poly-contextural programming is neither believing in nor opting for the ultimate univer-
sality of trichotomous-triadic concepts of category theory (Joseph Gogen) or Peircean
semiotics and even less in established dichotomous-dyadic formalisms of binarism and
digitalism. In a first attempt, contextural programming has to be connected with the
project of n-category theory (John Baez, Tom Leinster) and poly-mathematics (V. I. Ar-
nold).

Multiple-valued logics

Despite the fact that there are some historical connections between multiple-valued
logics and polycontextural logics (place-value systems, Gotthard Gunther), contextural
programming is not based or depending in any sense on it. Polycontextural logic is not
a multiple-valued logic but a theory and formalism of dissemination (distribution and
mediation) of all kinds of logics and logical systems. Also there is some similarity, it
shouldn’t be confused with the project of Combining and Fibering Logics (Gabbay,
Pfalzgraf), modal logical approaches or context logics.

Complexity first

To put it in a simplicistic phrase, the main difference between classical and contex-
tural programming is this: the first starts with structural simplicity and complexity is a
late construct, the second starts with architectonic complexity and simplicity is a form
of reduction. The philosophical difference is this: the first is considered with being, con-
cepts, classes, terms representing things, objects, meanings, the second is opting for
thinking, i.e., the mechanism of thinking of thinking, in contrast to thinking of some-
thing. Thus the first is semiotical and ontological, even onto-theological (Derrida,
Goguen), the second is kenomic and contextural.

Metaphor of Verstand und Sinnlichkeit

Metaphorically, contextural programming and computation is mediating cognitive
and aesthetic principles together, i.e., Verstand und Sinnlichkeit (Kant). Each contex-
ture is placed in the world, is taking place, to realize this situatedness it has to be dis-
tinguished from others which can be done by an indexical sign, like the sign for its
color. Thus, color is visualizing the positionality of a programming system. Thus, con-
ceptual and aesthetic principle in their interplay are defining contextural program-
ming.

What Contextural Programming is not?

 Rudolf Kaehr Februar 2, 2007 3/24/06 DRAFT From Ruby to Rudy 16

Reality construction

"The language also serves as a framework within which we organize our ideas
about processes." (Sussman) Contextural programming languages are strongly sup-
porting the conceptual activity of organizing ideas. Mono-contextural languages may
serve to organize the big design of a single programming design realized by a hier-
archically organized team. The poly-paradigm approach of poly-contextural languag-
es is demanding for complex co-operations and co-creations of horizontally organized
teams of different epistemological locations. Their interests are beyond problem solving
and are guiding future-oriented programming designs of reality construction.

Is there any chance to realize contextural programming?

Strictly, contextural programming can not be realized in the framework of an existing
programming language. There is also no chance to realize it on existing hardware.
So, is the idea of contextural programming simply a solitaire "brain-fuck"?

Things are not as harsh as it sounds if we move from the claim of strict realization to
the more realistic job of modeling and simulating polycontextural features in accessible
hard- and software systems. The main obstacles of a strict realization is given by the
interactional and reflectional super-operators. They simply don’t have any existence in
classic systems. But there is no reason why they couldn’t be simulated, say in the same
sense as multi-tasking is simulated and not realized on a single-task chip.

General Limits of Multi-Processor-Systems for PCL

The main reason why it is not possible to realize polycontextural computing systems
with multi-processor systems is embedded in the definition of the ALU of those systems.
ALUs are containing in their logic junctions and negations, say as NAND or NOR op-
erations. They are, obviously, not equipped with transjunctional operators. Transjunc-
tions are for PCL systems the main logical operators of interactivity. On the other hand,
it is not possible in polycontextural logics to define transjunctions with junctions and
negations only. Otherwise there would be a chance to build a polycontextural comput-
ing systems out of a combination of distributed processors, organized as a special kind
of a multi-processor system with distributed conjunctions and negations, poly-NANDs
and poly-NORs.

This statement is in strict contrast to the genuine approach of Gunther in his main
paper "Cybernetic Ontology" (1962) where transjunctions are defined by conjunc-
tions and negations only. A reduction which seems to contradict his own aim to deliver
a cybernetic theory of subjectivity. Because this result says, that subjectivity is definable
in objective terms only. The new distinction Gunther introduced to define subjectivity,
the possibility of rejection in contrast to acceptance, is reduced by this transformation
to acceptance only. Thus, subjectivity is reducible to objectivity. This may be true for
dead subjective systems but not for living systems.

These two facts, restriction of ALU and non-definability of transjunctions by junctions
and negations only, are forcing the attempt to realize polycontextural computation on
multi-processor systems from the attempt of realization to the attempt to emulate/simu-
late, i.e., to model such processes.

The other chance would be to design new processor types, not necessarily based on
electronics, which would be able to realize directly transjunctional operations. It
seems, that there are no "meta"-physical obstacles for that.

Conceptual modeling between IS and AS

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 17

From Ruby to Rudy

First steps...to Diamondize Ruby

This text is looking for the missing space in which the antagonism of vertical and or-
thogonal/transversal programming could meet and be realized. At the same time it
aims to give an idea about polycontextural and morphogrammatic approaches to pro-
gramming. Some hints are taken from AOP, others from comics of Ruby’s intros.

1 Conceptual modeling between IS and AS
 Well, programming is about conceptual modeling. GP

After an enormous impressive tour through modern programming paradigms, espe-
cially AOP and Generative Programming (GP), a more conceptual chapter tells us
some experiences about categorization, classification, class building and concepts.
Also this chapter is quite short and it has not to be specially representative for the whole
study by Krizysztof Czarnecki and Ulrich W. Eisenecker it is nevertheless confirming
its traditional position. "Concepts can be regarded as natural modeling elements be-
cause they represent a theory about knowledge organization in the human mind. The
relationship between concepts and object-orientation is apparent: Concepts corre-
spond to classes." GP, p 736

Without surprise in neither of their approaches, the "classic view", the "probabilistic
view" and the "exemplar view" to conceptual modeling, anything would appear which
could escape the fundamental is-has-abstraction of cognitive modeling. Without say-
ing, there is not the slightest shining of the magics of the as-abstraction to experience
and to enjoy. In other words, the general concept or paradigm of computation and pro-
gramming is not touched; it remains its natural taboo.

1.1 The classic view
"According to the classic view, any concept (or category) can be defined by listing

a number of necessary and sufficient properties that an object must posses in order to
be an instance of the concept." GP, p. 724

The scheme is: "define name statements".

1.2 The probabilistic view
"In the probabilistic view, each concept is described–just as in the classic view–by a

list of properties, that is, we also have a single summary description of a concept. The
main difference between them is that inn the probabilistic view each feature has a like-
lihood associated with it." GP, p.727

The scheme is: "define name statements modulo propabilistics".

1.3 The exemplar view
"In the exemplar view, a concept is defined by its exemplars rather than by an ab-

stract summary." GP, p.729
The scheme is: "define name statements equal exemplars".

Also things are much more complex in concreto, in all cases, the statements are char-
acterizing the concept named by its name by the general scheme of: X is Y.

Conceptual modeling between IS and AS

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 18

1.4 Relation between classes
The use of the is- and has-relation are common place in concept modeling, OOP and

other domains and are only shortly remembered and not properly discussed.
In this paper I will restrict my study to abstractions and their special relations (is, has,

and as). A new kind of abstraction, the morphic abstraction, which is producing mor-
phograms, is introduced, too. Standard works on Conceptual Reasoning and Model-
ing, like Sowa, Wille, etc. are not mentioned in this context.

• IS-Relation
 "This relation has to do with inheritance: A dog is an animal. A car is a vehicle. Because
a dog is animal it has all the features of animal and of course on top of that its own."
• HAS-Relation
 "In the system using delegation described above we have seen that an object must have
an instance of its super-class in its attributes in order to be able to delegate an unknown
message to a higher level."
 "Of course an object may have instances of several super-classes making it easy to imple-
ment multiple inheritance."
http://www.aplusplus.net/bookonl/node69.html

Problems with IS- and HAS-relations

All that sounds well established and not entangled with any problems which could
lead to a questioning of the concepts involved. But as usual things are not so simple at
a second glance. Two largely unsolved main problems are well known: polysemy and
multiple inheritance. The known strategies to deal with polysemy are all leading to an
infinite regress. The proposed solutions to multiple inheritance are leading, taken seri-
ously, to paradoxes and contradictions. And all in all, it is not available to machine-
readable solutions as proposed by the Semantic Web demands mainly because of the
amount of human depending negotiations.

As a first step to enhance the classical concept of ontology which is behind the OOP
approach I propose to introduce a new kind of relation/abstraction: the AS-relation.

1.5 AS-Relation
An object X, thematized as an object Y, is an object Z.
This wording correspondents to a general and neutral version of the as-abstraction.

The statement "A dog thematized as a dog is a dog" is a realization of the form "X as
X is X". It is easy to understand, that the classic ontological identity formula "X is X",
which is used as the base of "everything", is an abbreviation of the reflectional form
"X as X is X".

But "A dog as a weapon is a danger." is realizing the form: X as Y is Z.
This classic-ontological way of thinking, the is-abstraction, is guiding everything in

computer science and programming and is not restricted to the case of OOP.
But in practice, the real life of programming looks quite different. It starts even at the

very beginning of computing with the violation of its ontological identity principle. Take
the use of programs AS data and the use of data AS programs. Or the interpreter as
a program and the program as an interpreter. No problem! Yes, but also no theory of
this practice. ISIS: X is X, ASIF: X as if Y, AZZA: X as Y, NINI: Neither X nor Y, more at:

http://www.thinkartlab.com/pkl/media/SUSHIS_LOGICS.pdf
An early application of AZZA to existential-therapy as Diamond Strategies:

http://www.thinkartlab.com/pkl/nlp-work/Deconstruction&DiamondStrategies.pdf

http://www.aplusplus.net/bookonl/node69.html
http://www.thinkartlab.com/pkl/media/SUSHIS_LOGICS.pdf
http://www.thinkartlab.com/pkl/nlp-work/Deconstruction&DiamondStrategies.pdf

Polysemy: Conceptual modeling between abstraction types

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 19

2 Polysemy: Conceptual modeling between abstraction types
One-step thinking leads to 1000-step disasters.

2.1 Polysemy in is-abstraction mode
The main principle of ontology is demanding for disambiguating the polysemy of the

used terms. The simplest and historically oldest method to do this is given by renaming
the terms. This is working perfectly in a very small world–where nobody lives.

The problems of synonymy and polysemy can be handled by the extension mechanism and
use of axioms. An axiom of the form P1(x1; : : : ; xn) $ P2(x1; : : :; xn) can be used to state
that two predicates are equivalent. With this idiom, ontologies can create aliases for terms,
so that domain specific vocabularies can be used.
For example, in Figure 3.1, the term DeptHead in OU2 means the same thing as Chair in
OU due to an axiom in OU2. Although this solves the problem of synonymy of terms, the
same terms can still be used with different meanings in different ontologies.
http://www.cs.umd.edu/projects/plus/SHOE/pubs/#aaai2000

There are many open questions left. How does it fit together to have an ontological
relation “isa” and an obviously linguistic operation “rename”? To bring the modules
furn-ont and furn-ont2 and also univ-ont and univ-ont2 together we need at least a me-
diation by a third module, which is reflecting the terminology of both. But this linguistic
ontology would produce itself similar possibilities of polysemy.

Do it again: infinite regress of renaming
There is no reason to not to start the game of polysemy again with the term Seat as

furniture and Seat as seat, e.g. position, in the hierarchy of a department. And we can
disambiguate this polysemy again with the help of the term Chair. A seat as depart-
ment is a chair and a seat as furniture is a chair. And now we can turn around as often
as we want. Or we can enlarge the chain of renaming with Seat as Seat, the Portu-
guese car manufacturer SEAT or the Cafe Bar SeaT or Arthur's Seat in Edinburgh and
so on...If something is working for my tiny household it shouldn’t be trusted for more.

Extension of ontologies by renaming is not violating the principle of verticality, that
is hierarchy. Therefore, the tree is growing and with it its computational complexity. It
becomes obvious that the procedure of renaming is part of the broader activity of ne-
gotiation which is not part of machine activities.

http://www.cs.umd.edu/projects/plus/SHOE/pubs/#aaai2000

Polysemy: Conceptual modeling between abstraction types

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 20

2.2 Polysemy in as-abstraction mode
A reflectional analysis of polysemy using the as-abstraction is an analysis of the semi-

otic actions or behaviors of agents which is leading to the phenomenon of polysemy
and its possible conflicts with other semiotic or logical principles. Therefore, such an
analysis is more complex, because it has to describe the situation intrinsically, that is
from the inside and not only externally from the outside of an external observer.

Mono-contextural introduction of "isa":
A: Chair is part of a furniture ontology,
B: Chair is part of a department ontology,
C: Chair is part of a vocabulary ontology.

Poly-contexturally we have to translate these is-relations into following as-relations:
O1S1: Chair as such, that is, as an object "Chair",
O2S2: Chair as such, that is, as a person "Chair",
O3S3: Chair as such, that is, as a token "Chair".

Here, "as such" means, that the ontologies Person, Object and Vocabulary can be
studied and developed for their own, independent of their interactivity and reflection-
ality to each other but mediated in the constellation of their poly-contexturality, that is,
their distribution over 3 loci.

Interpretations of as-relations:
Voc O3S3 in Furn O1S3 : The token "Chair" as used to denote the object "Chair",
VocO3S3 in Dept O2S3 : The token "Chair" as used to denote the person "Chair",
Chair O2S2 in Dept O1S2 : The object Chair as used in the person ontology Dept,
Chair O1S1 in Furn O2S1 : The person Chair as used in the object ontology Furn.

Reflectional situations:
Chair O2S2 as in Dept O1S2:
System O1S1 has in its own domain space for a mirroring of O2S2. This space for

placing the mirroring of O2S2 is the reflectional capacity realized by the architectonic
differentiation of system O1. In other words, O1 is able to realize the distinction be-
tween its own data and the data received by an interacting agent. Data are therefore
differentiated by their source, e.g. their functionality, and not only by their content.

Chair O1S1 as in Furn O2S1:
System O2S1 has in its own domain space for a mirroring of O1S1.

S1 S2 S3 S1 S2 S3 S1 S2 S3

O1 O2

type 003

#

O3

type123type123

Polysemy: Conceptual modeling between abstraction types

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 21

A (re)solution of the problem
The solution of the (new) problem is in the (old) problem which the (new) problem is

the (old) solution.
1. The department Dept for itself has no conflict with polysemy. This conflict between

Dept and Furn is mediated by the Voc. That is, the Person of the Dept as Chair is a
person and nothing else.

2. The furniture Furn for itself has no conflict with polysemy. This conflict between
Furn and Dept is mediated by the Voc. That is, the Chairs as objects of the Furn are
chairs and nothing else.

3. The vocabulary Voc for itself has no conflict with polysemy between Dept and
Furn.

4. The meaning of the polysemic situation is realized by

Meaning of (O3S3) = interaction of (O1S3, O2S3)

The conditions for a conflict arises exactly between:

O1(S1,2,3) and O2 (S1,2,3) mediated by O3S3 as visualized by the blue triangles.

Both Furn and Dept are using Voc and both are using the string Chair. Both are dif-
ferent and are mapping the Voc differently relative to their positions, thus the Voc has
to be distributed over different places according to its use or functionality. The Voc used
by Furn is in another functionality, i.e., as-relation, than the Voc used by Dept.

4. Until now we have not yet produced a contradiction but only a description of the
situation of polysemy, that is, the necessary conditions for a possible ontological con-
tradiction. A user-oriented or behavior-oriented approach to the modeling of polysemy
has to ask "For whom is there a conflict?". Thus, polysemy is not conflictive per se but
can occur for a user as a conflict.

5. Therefore, we have additionally to the semantic and syntactic modeling of the sit-
uation to introduce some pragmatic instances. In our example this could be the user of
a Query which is answering the User in a contradictional manner.

Query´s contradiction
Thus, we have to deal with the contextures: (Query, Voc, Furn, Dept).
In the classic situation the Query answers with a logical conjunction of Chair as Per-

son and Chair as a Department member, which are logically excluding each other and
therefore producing for the User a contradictorily answer. Logic comes into play also

S1 S2 S3 S1 S2 S3 S1 S2 S3

O1 O2

type 003

#

O3

type123type123

for the polycontextural modeling, but here conjunctions too, are distributed over
different contextures. And therefore, there is no contradiction but separation. A
contradiction occurs only if we map the complex situation all together into a single
contexture. If we give up all the introduced ontological distinctions of polycontex-
turality and reducing therefore our ontologies to a single mono-contextural ontolo-
gy we have saved our famous contradiction again. But now, this contradiction is
a product of a well established mechanism of reduction and not a fallacy or a
problem. And sometimes it isn’t wrong to have it at our disposition.

Extension by mediation
The procedure of renaming can now be understood as an accretive ontology ex-

tension. To change from Chair as a furniture to Seat and from Chair as Dept to
DeptHead is not only a linguistic procedure of renaming in the vocabulary it is also
the use of two other ontologies in which these terms are common.

From the point of view of the new ontologies the conflict between Furn and Chair
becomes obvious and transparent as a linguistic conflict of using a Voc. Only from
the point of view of DeptHead and Seat the conflict appears as a conflict of syn-
onymy. From the positions of Chair as Furn and Chair as Dept their is simply a
conflict per se. Not opening up the possibility of an insight into its structure and
kind of conflict and therefore there is also no chance for a solution of the conflict.

A solution, thus, as a re-solution, is possible only in the mode of as-abstractions
realized in a polycontextural setting.

Comparison

The renaming procedure in the is-abstraction mode sounds very simple and intu-
itive compared to the proposed resolution of conflictive polysemy in the as-abstrac-
tion mode. The prize of the simple, one-step solution is, that it works only ad-hoc.
As a conception it runs into infinite regress and at the end doesn’t escape contra-
dictions and confusions. These situations appear very quickly if applied to polyse-
mic situation in the Semantic Web approach. First, the massive size of the Internet
allows endless procedures of renaming, second, the necessity of negotiations in
the process of renaming contradicts the aims of machine-readability of semantic
procedures. Again, one-step solutions are producing 1000-step problems.

The as-abstraction mode is at a first glance quite difficult to understand and its
exposition is still new and has yet to be improved. But there is some insight that
this approach, also only exemplified and not yet formalized, is not only not a one-
step ad-hoc convention but a functioning conceptual modeling of the complex sit-
uation of computational polysemy. That is, this approach is close to a feasible and
finite and therefore, machine-readable design of complex interactions suitable as
a mechanism to deal with the logics and semantics of the Semantic Web Vision.

http://www.thinkartlab.com/pkl/media/DERRIDA’S MACHINES.pdf

Question: Seth Russell: www-rdf-logic/2001Jul/0065
I think I've heard it said that the web must be monotonic. Have I misheard?
If not, then why must the web be monotonic?
Ansver: Pat Hayes: www-rdf-logic/2001Jul/0067
Good question. The answer is controversial, but seems to me to be clear. First, its not
the Web that is monotonic (whatever that would mean) but the reasoning from Web
resources that must be monotonic. And the reason is that it - the reasoning - needs to
always take place in a potentially open-ended situation: there is always the possibility
that new information might arise from some other source, so one is never justified in
assuming that one has 'all' the facts about some topic (unless you have been explicitly
told that you have.) Nonmonotonic reasoning is therefore inherently unsafe on the
Web. In fact, nonmonotonic reasoning is inherently unsafe anywhere, which is why all
classical reasoning is monotonic; this isn't anything particuarly new.[...]
http://robustai.net/papers/Monotonic_Reasoning_on_the_Semantic_Web.html

http://www.thinkartlab.com/pkl/media/DERRIDA%E2%80%99S
http://robustai.net/papers/Monotonic_Reasoning_on_the_Semantic_Web.html

Dimensionality of AS-abstractions

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 23

3 Dimensionality of AS-abstractions
 Abstraction is all there is to talk about: it is the object and the means of discussion.
 Guy L. Steels

3.1 Sentence vs. textures
The name giving process is identifying its object and installing the laws of identity,

thus these name givers are also called "identifiers". Like the lambda abstraction, which
is defined or introduced intra-contexturally, the new samba abstraction is a trans-con-
textural operation. To distinguish it from the lambda abstraction, it should be called
samba thematization.

Philosophically, to give a name is a special linguistic operation of the general mode
of thematizing. Thematizing is more textual, to give a name is propositional or senten-
tional. It is connected with the concept of a sentence as a statement. The philosophy of
the lambda calculus is even stressing this further to the point, that the definition of a
sentence is build by naming. To give a name is fundamental for the lambda calculus
and radicalized, brought to the point by A++.

Hermeneutics and in radicalizing it, deconstructivism, tried to surpass this restriction
and to focus more on texts, intertextuality, interpretability, iterability and ambiguity in
contrast to well-formed single isolated sentences and propositions. In this sense poly-
A++ can be considered as a further extension of the lambda calculus not from the in-
side but by distribution of the very idea and apparatus of the lambda calculus over
different loci, empty places. Surely not in changing at all anything of the lambda cal-
culus itself, but in disseminating it over the loci of the graphematic matrix.

Every programming language must somehow provide a `name giving' mechanism.
Thus, every polycontextural programming language-system must somehow provide a
general ’thematizing’ mechanism as a general feature allowing disseminated ’name
giving’ mechanisms which each of them allows to call procedures or functions and
have the possibility to refer to variables inside the ’name giving’ systems and between
different ’name giving’ systems.

A ’name giving’ procedure is also an identifier. To be able to identify something it
has to be separated from its environment, but something can be separated from others
only if it can be identified. We don’t want to go into this paradoxical situation which
is nevertheless the beginning of all formalism at all. But it should be mentioned that to
identify something is including also a semiotic-ontological principle of identity: the
named has not to be changed in the process of its naming. To name is to identify and
not to change. But this is true only for the very special class of identical beings. It
doesn’t apply for living systems and even quantum physics is running into some trou-
bles with this identity principle.

Abstraction as giving something a name is identifying something as something; it
should be called is-abstraction. In contrast, the as-abstraction is identifying something
as something else. That is, as-abstraction is thematizing something as something in a
specific context (situation, constellation, environment). As-abstraction, i.e., thematiza-
tion, is naming something as something and giving the context of its identification. The
context of identification is designed by the architectonics of polycontexturality. Abstrac-
tion as giving something a name is emphasizing the act of classification in contrast to
creation. As-abstraction is not naming something pre-given but evoking new creations.

as-abstraction = [evocation, contextualization]
is-abstraction = [identification, classification]

3.2 As-abstraction and object-schemes
A first analysis shows the 2-dimensional structure of the as-abstraction. The as-

abstraction is involved into the process of thematization. One dimension is the se-
mantic-ontological dimension, which is inherited by the is-has-component of the as-
abstraction. The second dimension is produced by the contextualization of the se-
mantic distinctions, something-as-something-else-is-something-else.

An object is always, in a reductive parlance, a n-tuple of determinations.
The formula: X as Y is Z, surely is only an abbreviation for the general scheme:

Thus, the separation of OOP and AOP in respect to Concerns can be dynamized
to a more flexible approach with the introduction of the concept of dynamic object-
schemes. There are some similarities to the Metapattern approach, too.

If we start OOP with dynamic and complex object-schemes, queer or horizontal
consideration can be involved without problems. An object is always based on an
object-scheme, for OOP it is simply a 1-object-scheme, thus for short, an object.
Thus, an object is an object, and nothing else.

Obviously, all thematizations of "dog" are producing different characterizations
of the is- and has-structure (of the concept "dog"), and have different consequences
for philosophers, animal rights people, police and army, toy industry, and so on.
For a programmer it is only a question of the dimensionality of the objects, or ab-
jects.

Thus, the concept or object "dog" is overdetermined, object(n), depending on
changing use, contexts, thematizations, etc. In other words, a complex object is
not pre-given but constructed in societal interactions and reflections. As an onto-
logical consequence, the statement "a dog is a dog", emphasizing on the reflex-
ivity of the class relation, is on 1-object-scheme level, but understood in the sense
of "a dog as such" is on the level of 0-object-scheme belonging to a Platonic
World. Multi-dimensionality of the as-relation should not be confused with the n-
adic relations of the is-abstraction as it is well established.

The above introduction of object-schemes is only a first step which is limited by
the analysis of ordinary language. Ordinary language as such is not offering
enough formal distinctions to develop the whole range of the dynamics of as-ab-
stractions. Complexity and dynamics of ordinary language is mainly realized by
its semantics. To realize object-schemes more properly we need not only syntactics
but also the architectonics and tectonics of language. Despite interesting work by
linguists and philosophers about metaphors and polysemy, analysis is best real-
ized with formal languages. Scriptural systems of polycontexturality with their het-
erarchic tabular architectonics and disseminated tectonics are able to incorporate
complex chiasms between its levels.

object as

object

object

n

n()

−

−

1

2

...............

−−

− −

−()

object

is

object

objectn

1 1

2 −−

− −

2

.....................

n object n

a dog

a dog

an animal

a wapon

ro

�

�

�

�

.............

as

bbot

a dog

a creature

a dn

()is

�

�

�aanger

a toy

..............

Contextu(r)alizing the AS-abstraction

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 25

4 Contextu(r)alizing the AS-abstraction
Abstraction as giving something a name is emphasizing the act of clas-
sification in contrast to the act of co-creation. ThinkArt Lab

Following the architectonics and tectonics of the lambda calculus and ConTeXtures
some of the combinatory possible as-constructions are presented below.

Again, the as-abstraction can be defined intra-contextural, contextualizing names
from context to context inside a contexture or trans-contextural, contexturalizing names
between different contextures. The latter application of the as-abstraction is crossing
and bridging different contextures in a single or multiple way.

A first step forward in formalizing polycontextural programming is: From "define
name" to "define a namei as a namej between different contextures".

This AS-function I have introduced as an extension of the OOP strategies. But it is
introduced at the very beginning of the lambda construction "define name" as it ap-
pears on the base of the proemial relationship. Not only contextures can be named
and names be contexturalized but also names can be named as other names between
and inside of contextures in the sense that namej refers to another context or contexture
than namei, both belonging to the complexion involved in the play. Therefore, the ref-
erentiality and transparency of ConTeXtures is not restricted to any hierarchy of tecton-
ics. Levels and meta-levels of reflection are connected by means of proemiality
realizing its structural rules of exchange, order and categorial correctness (coinci-
dence) avoiding wild jumps, structurally possible, but not analyzed in this context.

4.1 Modus I: A name is a name in a single contexture
Abstraction as "giving a name" is de-
fined intra-contextualy as identifying its
named object. This abstraction is on
the base of the lambda calculus and
programming languages based on it,
like LISP, SCHEME, ARS.
Because of its monocontexturality the
two headers "thematize" and "identi-
fy" can be omitted in the classic use.
But it remains nevertheless a precondi-
tion of the whole construction. Every-
thing else is boxed into this litt le
construction of (head + body).

A short remainder of the syntax in EBNF-Notation for ARS
 <contexture> :: = <expression> || <position>=1

 <expression> ::= <abstraction> | <reference> | <synthesis>

 <abstraction> ::= ’(’ define <variable> <expression> ’)’ |
 ’(lambda (’ {<variable>}’)’ |
 <expression> { <expressions> }’)’

 <reference> ::= <variable>
 <synthesis> :: = ’(’ <expression> { <expression> }’)’
 <variable> ::= <symbol>
 EBNF-syntax plus "||": transcontextural parallelity

thematize mono contextural

identify conte

� �

�

− is

xxture

define Name of Abstraction

lambda

j� �(� �) �

�� � �

�����������������

< >

<

List of Parameters

Stattement

Statement

State

1

2

>

< >

<

�����.�.�.�.�.�.

mmentn >

Contextu(r)alizing the AS-abstraction

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 26

4.2 Modus II: Statements as statements in a contexture
Contextual use of the as-abstraction is possible, even in the classic lambda calculus,

between statements: statementi as statementj in a fixed contexture of naming. That is in
the domain defined by the calculus.

Thus, this use is restricting dynam-
ics to intra-contextural changes of
contexts, but excluding crossings to
other contextures. Connections of
this kind of abstraction to context
based lambda calculus, typed sys-
tems and fibred lambda calculi
could be a natural application. The
following syntax in EBNF notations
should be read as first step ap-
proaches.

A short syntax of "statement as statement" in EBNF-Notation
 <contexture> :: = <expression> || <position>=1

 <expression> ::= <abstraction> | <referencei as referencej> | <synthesis>

 <abstraction> ::= ’(’ define <variable> <expressioni as expressionj> ’)’ |
 ’(lambda (’ {<variable>}’)’ |
 <expression> { <expressions> }’)’

 <reference> ::= <variablei as variablej>
 <synthesis> :: = ’(’ <expression> { <expression> }’)’
 <variable> ::= <symboli as symbolj>

In ConTeXtures there are, at least,
two abstractors in the play: the (clas-
sic) is-abstraction select and the
polycontextural as-abstraction
elect.The selector is defining and
founding the "define"-operation, the
elector is introducing the identify-op-
eration which is electing a contex-
ture. On a higher level, the operator
“thematize" is defining the scenari-
os and score of programming.
Chose style is introducing different
programming styles. Select topics
show which sorts and types are un-
der consideration. At the end, we
have the disseminated lambda cal-
culi, "based" on the complexity and

general structure of dissemination, the heterarchic architectonics. Thus, programming
languages based on contextures are distributed heterarchically along the architecton-
ics of ConTeXtures which can be seen as a distribution of ARS.

� � �

�

thematize intra contextural

identify con

− as

ttexture

define Name of Abstraction

lambda

� � �

�

< >

<< >

< > <

List of Parameters

Statement as Stat

� �

� �1
1 eement

Statement as Statement

1
2

2
1

2
2

>

< > < >� �

������.�.�.�.�.�.

� �< > < >Statement as Statementn n
1 2

ConTeXtures

sketch horizon

build architec

m−

−

()

ttonics

thematize scenarios

choose styles

sele

−

–

cct topics

identify contextures

define opera

–

−

−

ttions

abstract function

propose statements

−

−�{{ }

Contextu(r)alizing the AS-abstraction

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 27

4.3 Modus III: A name as a name in a contexture

The steps of interpretations of names, namei as namej, can be made explicit by in-
troducing the as-abstraction in the "name giving" procedure. Thus, the innocent iden-
tifier "define name" has to be enlarged to "define namei as namej" inside a contexture.

A short syntax of intra-contextural "name as name" in EBNF-Notation
 <contexture> :: = <expression> || <position>=1

 <expression> ::= <abstractioni as abstractionj> | <referencei as referencej> | <synthesis>

 <abstraction> ::= ’(’ define <variablei as variablej> <expressioni as expressionj> ’)’ |
 ’(lambda (’ {<variablei as variablej>}’)’ |
 <expression> { <expressions> }’)’

 <reference> ::= <variablei as variablej>
 <synthesis> :: = ’(’ <expression> { <expression> }’)’
 <variable> ::= <symboli as symbolj>

Also this scenario stays inside a single contexture it opens up a great flexibility of
interchanging definitions of concepts. Applied to types it rules the changes between
types, say from Boole to List, etc. inside a contexture. This change allows to apply sev-
eral definition of an object at once. A "neutral" object, thematized in one context, can
be dealt in another context as of type LIST and simultaneously as of type NUM in a
further context. Thus, this kind of abstraction is introducing at the very beginning of its
definition the possibility of dealing with contexts. The whole scenario can be iterated
for several contextures opening up contexturally different kind of (intra-contextural) con-
textual systems. Not to confuse a multitude of contexts with systems containing a plu-
rality of contextures. One is part of context logics, the other of polycontectural logics.

This kind of as-abstraction inside the naming procedure, allows to call-by-name the
name itself in the modus of sameness. This self-call is still enclosed in a common con-
texture but deliberates the naming procedure to a context related self-naming. In the
following, self-naming is deliberated step by step to the possibility not only to name a
contexture but to the possibility of thematizing contextures by contextures. Naming, to
give something a name, to make an abstraction within propositions is considered as a
very special mode of thematization in textual constellations. Thus, thematization is in-
troducing different strength of architectonic and tectonic self-referentiality.

thematize intra contextural

ide

� �− name - as - name

nntify contexture

define Name of Abstracti

�

� (� �< oon AS Name of Abstraction

lambda Li

i j) � �(� �) �

�

>

< sst of Parameters

Stateme

� �

�����������������

>

< nnt

Statement

Statement

1

2

>

< >

<

�����.�.�.�.�.�.

nn

lambda Li

>

<� sst of Parameters

Stateme

� �

�����������������

>

< nnt

Statement

Statement

1

2

>

< >

<

�����.�.�.�.�.�.

nn >

Contextu(r)alizing the AS-abstraction

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 28

4.4 Modus IV: A name as a name between contextures

A short syntax of trans-contextural "name as name" in EBNF-Notation
 <contextures>(m) :: = <expression> || <position1> || <position2> ||...|| <positionn>

 <expressioni as expressionj>
(m) ::= <abstractioni as abstractionj> |

 <referencei as referencej> |
 <synthesisi as synthesisj>

 <abstraction1 as abstraction2>(m) ::= ’(’ define <variablei as variablej>
 <expressioni as expressionj> ’)’ |
 ’(lambda as lambdaj (’ {<variablei as variablej>}’)’ |
 <expressioni as expressionj> { <expressioni as expressionj> }’)’

 <reference>(m) ::= <variablei as variablej> || <variablei as expressionj>
 <synthesis>(m) :: = ’(’ <expressioni as expressionj> { <expressioni as expressionj> }’)’
 <variable> (m) ::= <symboli as symbolj> || <symboli as expressionj>

This construction of the as-abstraction, i.e., thematization, is enabled to call by name
from the viewpoint of one contexture the name in another contexture. It is not yet able
to call another contexture as such but has access to the name in use of it. The name of
the different contexture is defined by another abstraction than is the name of the calling
name. To call a name of a different contexture is not a simple jump to another contex-
ture because both the first and the second distinctions remain in use at once.

In the examples, I am not considering the structure of the mechanism responsible for
the exchanges. This would introduce the well known proemial relation, short chiasm.

 http://www.thinkartlab.com/pkl/lola/poly-Lambda_Calculus.pdf

thematize trans contextural� �− name - as - contextuure

identify contexture

define Name of Abs

i�

�(� � ttraction

lambda List of Parameters
i)

� � �

�����

< >

�������������
�����.

< >

< >

Statement

Statement
1

2

��.�.�.�.�.

< >

Statementn

elect namej�

identify contexture

define Name of Ab

j�

� �(� � sstraction

lambda List of Parameters

j) �

� � �

���

< >

���������������
����

< >

< >

Statement

Statement
1

2

��.�.�.�.�.�.

< >

Statementn

thematize chiasm M

contextures

iden

� ,�σ()()

()

3

3

ttify LC

M

elect M

�

�

1

2

σ

identify LC

M

elect

�

�

2

1

σ

σ

identify LC

M

� 3

σ[[]

A�kind�of�a�formula�for�chiasm�(M,�)σ

M M3 1 →→ →

 → →

σ σ σ

σ σ

1 2 2 3

1 1 2 2

M

or

M M

���������������������������������������

����������M 3
��������������������������������� � → σ 33

http://www.thinkartlab.com/pkl/lola/poly-Lambda_Calculus.pdf

Contextu(r)alizing the AS-abstraction

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 29

4.5 Modus V: A name as a contexture in a polycontexturality
One of the most intriguing possibilities is the chiasm, interlocking mechanism, be-

tween a name of a contexture and a contextures of a compound contexturality. It
wouldn’t be much reasonable to treat this possibility in an is-abstraction formalism. Be-
cause the part (name) would be the whole (contexture) and vice versa. But a name as
a contexture and a contexture as a name is not only a reasonable wording but a base
for a working formalism.

A short syntax of trans-contextural "name as contexture" in EBNF-Notation
 <contextures>(m) :: = <expression1> || <expression2> ||...|| <expressionn>

 <expressioni as expressionj>
(m) ::= <abstractioni as abstractionj> |

 <referencei as referencej> |
 <synthesisi as synthesisj>

 <abstraction1 as abstraction2>(m) ::= ’(’ <definei as definej> <variablei as variablej>
 <expressioni as expressionj> ’)’ |
 ’(lambdai as lambdaj (’ {<variablei as variablej>}’)’ |
 <expressioni as expressionj> { <expressioni as expressionj> }’)’

 <reference>(m) ::= <variablei as variablej> || <variablei as contexturej> ||
 <contexturei as variablej>
 <synthesis>(m) :: = ’(’ <expressioni as expressionj> { <expressioni as expressionj> }’)’
 <variable>(m) ::= <symboli as symbolj> || <symboli as contexturej> ||
 <contexturei as symbolj>

Additional to the abstraction "name as name between contextures”, this abstraction
between name and contexture delivers mechanisms for "calling" a contexture by
name, thus enabling strict reflectional programming. A reflection of a system onto itself
is possible in the modus of sameness as contrasted to the modus of equality (identity).
In the case of equality not much more than paradoxes and endless iterations into hier-
archies to avoid conflictive constellations are possible. In the modus of sameness, re-
flections of all kind are possible without producing any contradictions. But the price we
have to pay is to move from equality to sameness and to loose the paradise of homo-
geneous uniqueness of the programming paradigm. In other words, we have to risk a
jump between different contextures, not fearing the abyss of dis-contexturality between
a multitude of different "roots".

Towards EBNF of EBNF: http://www.csci.csusb.edu/dick/papers/rjb99g.xbnf.html
Polycontexturality understood as fibered logics, made save with index categories at:

http://racefyn.insde.es/Publicaciones/racsam/art%C3%ADculos/racsam%2098_1/
2004-pfalzgraf.pdf

thematize chiasm

contex

� name,�contexture()()3

ttures

identify contexture

define name

par

3

1

()

�

�

aameters

elect contexture

{ }

� 2

identify contexture

define name

paramet

�

�

2

eers

elect contexture

{ }

� 1

iidentify contexture

define name

parameters

�

�

3

{ }}

http://www.csci.csusb.edu/dick/papers/rjb99g.xbnf.html
http://racefyn.insde.es/Publicaciones/racsam/art%C3%ADculos/racsam%2098_1/

Contextu(r)alizing the AS-abstraction

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 30

4.6 Example of a transcontextural as-abstraction
An example of a transcontextural as-abstraction formulated in the framework of Con-

TeXtures is given below. The point in this example is not so much the shifts from one
topic to another, say from "zero" to "nil" and to "flase", this could still be intra-contex-
tural, but the fact that these different topics are located in different contextures, all hav-
ing their own topics, too. Also this example shows a polycontextural constellation, its
polycontexturality is limited to reflectionality, excluding interactionality. Thus, "nil" in
contexture1.1, not thematized in this example, is contexturally different from "nil" in
contexture1.2.

Thus, "define name" is an abbreviation of "de-
fine namei as namej" with i=j.
– replication repl, in this example, is a meta-
morphic replication and not replicating isolat-
ed configurations.
Exchange relations:
– "define zero" is "define zero as zero", as the
start of the levels. It could itself be produced by
a predecessor level.
as: define zero in contexture1.1 as zero in
contexture1.1
– "define nil" is "define zero as nil",
as: define zero from contexture1.1 as nil in
contexture1.2
– "define false" is "define nil as false".
as: define nil from contexture1.2 as false in
contexture1.3
This change of identity of the topics from one
contexture to another by reflection/replication
is producing a chiastic chain guaranteeing the

connectedness of the step-wise reflection of the whole. This chain is ruled by reflection-
ality, produced by the operator replication. An interacting neighbor system, S1 or S2,
could reflect in its contexture this fact of chiastic connectedness. It is of importance, that
this chain is ruled by chiasm or the proemial relation with its components of order, ex-
change and coincidence relation. Otherwise the chain simply would not be a mediat-
ed chain but a summation or iteration of reflectional steps.

Other examples would model the constellation in an interactional way, involving dif-
ferent interacting contextures, or in a mixed way of interactional and reflectional real-
izations. All mediated together and enabled by the proemial relation. And the whole
machinery of different types of as-abstractions can be involved together.

What is working for elementary situations like topics (Num, List, Boole) in the above
example, can be applied to handle more concrete programming features like objects
and aspects, primary and secondary concerns, security, logging, and others.

Some ideas of mixed modeling of iterability of Gödel constructions is developed at:
http://www.thinkartlab.com/pkl/lola/Godel_Games-short.pdf

samba repl horizon

poly topics Num

() (,� ,�)

�

3 ∅ ∅ −

− ,,� ,�

(,� ,�

List Boole

thematize zero nil false

()
))

(

.identify contexture

define zero

lambda

1 1

�� �)

(� �(� �)

������������������

f

lambda x

x

∅���� ����∅∅�

.

.

identify contexture

define zero as

1 2

1 1 nnil

lambda l

true

�(��)

�������������

∅ ∅���� ���� �

identify c oontexture

define nil as false

lambda

1 3

1 2

.

.

�(

aa b

b

� �)

������������������

∅ ∅

 ���� ���

http://www.thinkartlab.com/pkl/lola/Godel_Games-short.pdf

Object-Schemes as Morphograms

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 31

5 Object-Schemes as Morphograms
Abstraktion schwächt, Reflexion stärkt. Novalis

To be more consistent to my usual terminology I have to introduce morphograms.
In a strict sense, object-schemes are morphograms. Simply because object-schemes

are the schemes of possible complex objects, but object-schemes as schemes are not
themselves objects at all. Object-schemes are giving space to inscribe the complexity
of objects independent of the content of it. That is, object-schemes are neutral to data-
types, to sorts and other typing distinctions. Thus, neutral to objects.

But object-schemes, based on complex as-abstractions, are not yet giving informa-
tion about the structuration of the complexity of the complex object. The list of different
as-components in the determination of the complex object may look like a homoge-
neous space of as-attributes. This is not only quite un-realistic but also contradicts the
plurality of contextures of a complex object.

Morphograms are accessible by the morphic abstraction, which in fact is a subver-
sion, and are studied in the new discipline morphogrammatics. The morphic abstrac-
tion is abstracting the holistic structure of complex object-schemes. Thus, the whole as-
abstraction is based on morphograms. Morphogrammatics are opening up the possi-
bility of a "paradigm-free" scriptural system for conceptualization and programming.

(In linguistics and grammatology morphograms, esp. for Chinese and Japanese writ-
ing, are also called logograms or ideograms.)

Cf. http://www.uni-ulm.de/uni/intgruppen/memosys/desn22.htm

"But since we pointed out that every ontological datum of the world must be considered an
intersection of an infinite number of contextures, the fact that any two data we choose to
describe in their common two valued relations belong to one contexture does not exclude
that the very same data may also apart from the contexturality chosen for our description
belong separately to additional and different contexturalities."
Gotthard Gunther, Life as Polycontexturality.

What does it mean?
To speak and program about as-this-and-as-that treats the parts of the complexions,

this-and-that, as neutral and homogene. There are no semantic-ontological differences
between the parts involved. But this is not only an advantage in the sense of a broad
homogeneity but also can turn into a disadvantage as a loss of structuration.

Thus, structured object-schemes are presented, inscribed by morphograms.
Concept modeling in a morphogrammatic sense is not rooted in an ultimate root as

the unique origin of conceptualization, but in a multitude of beginnings and ends, me-
diated together by their morphogrammatics. Thus, there is no ultimate "Class Object"
as the root of the system, but a dynamic interlocking mechanism of conceptual begin-
nings and ends based on pragmatic decisions. By the complexity of an object I under-
stand the number of contextures involved. Objectionality thus is structured by the
sameness (Gleichheit) and difference (Verschiedenheit) of its contextures. This distinc-
tion is quite intriguing because it is not based on equality and its logics. The German
language allows to introduce differences into the distinction identity/diversity as Sel-
bigkeit/Gleichheit/Verschiedenheit. Maybe equality/equivalence/difference and its
iteration/accretion could help to introduce more liberty into the game of our thinking,
freeing us from the necessity of killing what is different and not part of the scheme.

http://www.uni-ulm.de/uni/intgruppen/memosys/desn22.htm

5.1 Diagrams of equality, sameness and difference
 Diagram of equality/sameness/difference

The diagram show a general scheme of an extension of the difference of identi-
ty/diversity to the differences of equality/sameness/difference.

 Identity/diversity relations

This extension can be modeled as a distribution of the original identity/diversity
relation over 3 loci. Thus, iterating the difference: equality = {id1, id3}, sameness
= {div1, id2}, difference = {div2, div3}. Obviously, all these id/div-relations are se-
mantically founding a base of a logical system, delivering different negations.

Negations in polycontextural logics have two function: 1) inversion of the values
(id/div) and 2) permutations of the subsystems involved. Thus, N1(id1.3, div1/id2,
div2.3) = (div1/id2, id3.1, div3.2). That is, the values of subsystem1 are inverted to
(id1, div1) => (div1, id1) and the subsystems2.3 are permuted to subsystems 3.2.

 Differences in the concept of sameness of a complex object

Different paths through the graph of the determination of an objects’ complex
identifying structure can be studied and linked to multi-negational operations.

 Without doubt, the ambiguity can also be distributed over the terms "equal" or
"different". Thus, different interpretations of the id/div-relation are possible. E.g,
(equal1, equal2, same, different1, different2) or (equal1, same1, same2, different1,
different2). With additional terms for id/div-clusters new wordings are avaiable.

http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-medium.pdf

object

identity diversity

equality sameness difference

object0

id1 div1

id1

id3

div2
div3

div1
id2

equal same1 same2 same3 different

object

id1
div1

http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-medium.pdf

Object-Schemes as Morphograms

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 33

5.2 An example: 3-fold objectionality
For a complexity of m=3, representing 3 viewpoints or aspects there are only 5 pat-

terns of complexity of the object-scheme, that is, only 5 morphograms, possible. For
m=4, 15 morphograms are introduced. The number corresponds to the Stirling Num-
bers of the Second Kind (1, 2, 5, 15, 52, 204, ...). Thus, for 6 viewpoints we get 204
patterns.

The 5 morphograms mgi are in-
scribing the range of distribution
of sameness and difference of
viewpoints over 3 loci.

Reflector on Morphograms

A simple operator on morpho-
grams can be introduced, the re-
flector refl. This reflector simply
produces an inversion of the pat-
tern, that is of the morphogram.
Some morphogrammatic equiva-
lences, using letters:
Thus, refl[aab] = [baa] = [abb]
While, refl[abc] = [cba] = [abc]

The operator refl can be used to produce changes in the structure of object-schemes,
say as a change of interests, priorities, etc., while not changing its complexity.

Object-schemes are implementing different general viewpoints, thus, the operator
refl is a simple and elementary operator of changing the order and priority of view-
points in a reflectional system. This change is not eliminating, reducing or augmenting
viewpoints but only changing their priority and relevance. By convention we could
apostrophe the first locus of a morphogram as the first viewpoint. Thus a repetition of
the first in [aab] can be changed by the reflector refl into a repetition of the second
and reducing the first’s repetition to a single occurrence, as in refl[aab] = [abb].

Other operators exists, e.g., reductors, which are reducing the structure of morpho-
grams to simpler morphograms, say, red[abc] = [aab]. Morphic abstractions are in
some kind abstractions of abstractions. Abstractions like is-abstractions are producing
equivalence classes (reflexivity, symmetry, transitivity) of their elements building ab-
stract objects. As-abstractions are multi-dimensional abstractions delivering multi-equiv-
alences and poly-abstract objects. Morphic abstractions are abstracting from any
objects retaining only the structure of the multi-dimensional abstract object. As second-
order abstractions they are rejecting any kind of identification and reference to objects.

Morphogrammatics and architectonics

Morphogrammatic operators might be understood as operators able to change the
architectonics of a system of programming. Intra-systemic operators are based on their
architectonics, thus don’t have direct access to transform their underlying architecton-
ics. But polycontextural systems, which are involving the morphic abstraction, too, are
capable of transforming their architectonics, thus, producing a kind of self-transforma-
tion or self-modification. There is nothing mysterious in changing priorities and para-
digms of an evolved re-solution. Suddenly, other aspects which hadn’t be prior on the
list are emerging in the development and are becoming dominant.

Morphogrammatics at: http://www.thinkartlab.com/pkl/media/mg-book.pdf

morph object mg mg mg mg mg3
1 2 3 4 5

()() = [� � ,� ,� ,� ,�]]

refl mg mg i

refl mg mg

i i� � � ,� , ,

� � � ,�

() ≡ =

() ≡
1 3 5

2 4 �� � � �refl mg mg4 2() ≡

Thus refl refl mg mg

and refl refl

,� � � � ,

,� �

2 2()() =

mmg mg4 4()() =� �

morph object scheme−() =()3 � �

� � � �

� � � �

○� � � �

http://www.thinkartlab.com/pkl/media/mg-book.pdf

Object-Schemes as Morphograms

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 34

5.3 Morphogrammatic evolution of object-schemes
Object-schemes are defined as dynamic patterns. Object-schemes as morphograms

can grow and reduce naturally along the rules of emanation and evolution of morpho-
grammatics. These rules are not so obvious as the composition/decomposition out of
elementary parts pre-defined in a repertoire.

 Tree representation of morphograms

The evolutionary development of morphograms
is determined by its Sterling Numbers of Second
Kind and not by a pre-given successor operation.
Thus, the quasi dyadic, triadic, n-adic structure of
the development tree is determined not by an al-
phabet nor the successor operation but by the mor-
phograms involved at the place of evolution. That
is, the 4th step of the development is determined
only by the facts of the 3rd step. And not abstract
by an atomistic alphabet and its operators.

 Tabular development
The evolutionary development of morpho-

grams is determined by its Sterling Numbers
of the Second Kind and not by a pre-given
successor operation, producing a free
monoid. Thus, the quasi dyadic, triadic, n-
adic structure of the development tree is de-
termined not by an alphabet nor a stable suc-
cessor operation but only by the just morphograms involved at the place of evolution.
That is, the 4th step of the development is determined only by the facts of the 3rd step.
And not in an abstract way by an atomistic alphabet and its operators.

5.4 Morphogrammatic devolution of object-schemes
The holistic characteristics of morphograms becomes even more obvious if we ob-

serve their decomposition (devolution) into parts.
 Graph of monomorphies

Decomposition of complex object-schemes, mor-
phograms, is, in accordance to its evolution, not
a devolution into its elementary or atomistic
parts, but into its monomorphies. Monomorphies
are the parts (Teile) of a whole (Ganzheit).
The diagram gives an idea of devolution of the
5 morphograms into monomorphies.
An atomic understanding of morphograms, say
as sequences of signs, would decompose the
morphogram [aaa] into {a,a,a}, thus into {a}. But
considered as a morphogram, [aaa] is not a se-
quence but a pattern, a Gestalt (morphe), of ho-

mogeneous structure and therefore not accessible to decomposition into morphic parts.
This may hint to the fact that evolution (composition) and devolution (decomposition)

of morphograms are not ruled by a simple word algebra which is producing an econ-
omy of linear sequences of signs.

a

a
a

a
b

a
a
a

a
a
b

a
b
a

a
b
b

a
b
c

aa
ab

aaa
abb
bbcaa

aaaaaaaaaa

aaaaaa bbccabbbccd

aaabbbbbbb
abbbcbaccac

a

a
a

a
b

a
a
a

a
a
b

a
b
a

a
b
b

a
b
c

Object-Schemes as Morphograms

 Rudolf Kaehr Februar 2, 2007 8/19/05

DRAFT

From Ruby to Rudy 35

5.5 Morphogrammatic operations on object-schemes

There are a lot of interesting operations on morphograms. To give an idea I mention
only a few. Additional to the operations of evolution/devolution and reflection different
kinds of fusions and de-fusions are possible. A kind of concatenation called @-fusion
(Verkettung, Vk) may be the most familiar. Other types of fusion are the operation of

affiliation

 (Verschmelzung, Vs) and the operation of

compacting

 (Verdichtung). To all
these operators the inverse operation has to be introduced, thus to concatenation

de-
concatenation

(Ent-Kettung, EVk), to affiliation

de-affiliation

 (Ent-schmelzung, EVs), and
to compacting

de-compacting

 (Ent-Dichtung). On the base of these operations it can
be shown that the morphogrammatic equivalence is not depending on the "length" of
compared morphograms. Thus,

 Two morphograms are morphogrammatic equivalent
iff they can be decomposed into equal monomorphies.

The following examples may illustrate the general idea of fusion/de-fusion.

5.5.1 @-fusion of morphograms

The @-fusion can be compared to the semiotic concatenation but not accepting the

identity of signs. It can be seen as a kind of a "domino" continuation.
5.5.2 &-fusion of morphograms

The &-fusion is connecting two morphograms by "melting" on one kenogram.

5.5.3 $-fusion of morphograms

The $-fusion is melting morphograms into monomorphies of the same structure.

5.5.4 Morphogrammatic equivalence of [abba] and [aba]

Also length([abba]) > length([aba]),
mg-equivalent([abba], [aba]) iff EVk * Vs = EVs * Vk.
This morphogrammatic equivalence can be compared with the co-algebraic concept

of

bisimulation

. Two morphograms are equivalent iff they

behave

 the same. This obser-
vation maybe the most radical departure from a semiotic understanding of writing.

@ � � � �[],�[] :−

[]

fusion of morphograms aab ab

aab

2

��@[] �
,� ,� ,�

ab
aabab aabba aabac aabbc

=
[] [] [] []
aaabca aabcb aabcd[] [] []

,� ,� .

& � � � �[],�[] :−

[]
fusion of morphograms aab ab

aab

2

��&[] � ,ab aaba aabc= [] []{ }

$ � � � �[],�[] :−

[]
fusion of morphograms aab ab

aab

2

��$[] �ab aab= []{ }

A=(abba)

B=(aba)

(ab, ab)=C

(ab, ab)=C

EVk

EVs

VkVs

Object-Schemes as Morphograms

 Rudolf Kaehr Februar 2, 2007 8/19/05

DRAFT

From Ruby to Rudy 36

5.6 AOP-strategies onto Morphograms

The idea of object-schemes, understood as

morphograms

, is enabling a further step
of conceptual concretization of the approach of multi- and poly-paradigm program-
ming. Additional to the 2 dimension of

reflectionality

 and

interactionality

, as devel-
oped earlier, a kind of qualitative differences are involved into the complex
distributions. It is important to understand that in a classic approach of programming,
multi- or uni-paradigmatic, diversity is introduced by types, sorts, structures, etc. all hav-
ing a clear semantic characterization and are ruled by a single underlying logic (FOL).

Morphograms in contrast are introducing diversity on a pre-semantic level, consider-
ing only the

localization

, the placing of paradigms in the polycontextural grid and not
their semantic characteristics. But to differentiate paradigm-schemes or patterns of par-
adigms from each other they have to be able to be distinguished. And because there
are no data types, objects, involved, it can not happen on the usual level of abstraction
of identity/diversity. This kind of distinction, thus, is localized on a morphogrammatic
level, established by the

morphic abstraction

, delivering differences beyond semiotic
and logical principles of identity and identification.

"Das polykontexturale Objekt nimmt auf Grund seiner internen Komplexität nicht einen,
sondern mehrere Orte simultan ein, es ist also polylokal. Das reine poly–lokale Objekt in
Absehung jeder kontextur–logischer Thematisierung, bezogen nur auf seine Architektur
bzw. Komplexität seiner Substanz, als reines Dies–da, ist bestimmt allein durch die Struktur
seiner Örtlichkeit, und diese wird notiert in der Kenogrammatik als MORPHOGRAMM ."
OVVS 1985

The morphic abstraction can be understood as the process (subversion) of unveiling
the invariant patterns of disseminated contextures containing different programming
paradigms. Patterns, neutral and invariant to the viewpoints which are behind object
schemes.

Thus, in a simple wording, to apply, say 5 times the same programming paradigm
from 5 different points of view to deal with 5 different aspects would be invariant in
respect of the chosen paradigm. It wouldn’t make a difference which paradigm is ap-
plied, only the fact that there are 5 times the same is of interest. If there would be 5
different programming paradigms for 5 different aspects, a permutation of the 5 par-
adigm wouldn’t make a difference under the morphogrammatic abstraction. But obvi-
ously, the two examples are morphogrammatically different, [aaaaa]

≠

 [abcde]. On
the base of morphogrammatic equivalence between programming paradigm patterns
translations from one realization to another are well founded. Applying the transforma-
tional rules of morphogrammatics to paradigm patterns interesting evolutions/devolu-
tions and metamorphosis are accessible to programming. Conflictive constellations
between different approaches are more directly analyzed on a morphogrammatic lev-
el than through the disturbing complexity of conflicting programming paradigms.

Also the morphogrammatic abstraction is introducing a highly abstract level of un-
derstanding programming, it has a great concrete importance if we consider, in addi-
tion to the concepts of AOP, the complex and dynamic

architectonics

 of distributed and
mediated programming paradigms.

The study of object-schemes, morphograms of distributed programming paradigms
and architectonics of programming systems as sketched in

ConTeXtures

 could enhance
the computation of many so called intensional, metaphoric and complex conceptual
constellations which occur, e.g, in reflective security systems.

AOP-style: A multi-paradigm view?

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 37

6 AOP-style: A multi-paradigm view?
The Panalogy Principle: If you 'understand' something in only one

way then you scarcely understand it at all—because when some-
thing goes wrong, you'll have no place to go. Marvin Minsky

6.1 AOP-Strategies
From a systematic point of view there still exists the idea in AOP-programming that

a nice hierarchy between the main systematic "components" or programming para-
digms has to rule the business. First Methods, second Objects, third Aspects.

Aspect-oriented programming (AOP) grew out of a recognition that typical programs often
exhibit behavior that does not fit naturally into a single program module, or even several
closely related program modules. Aspect pioneers termed this type of behavior crosscutting
because it cut across the typical divisions of responsibility in a given programming model.
In object-oriented programming, for instance, the natural unit of modularity is the class, and
a crosscutting concern is a concern that spans multiple classes. Typical crosscutting con-
cerns include logging, context-sensitive error handling, performance optimization, and de-
sign patterns.

AOP introduces aspects, which encapsulate behaviors that affect multiple classes into reus-
able modules.
AOP addresses a problem space that object-oriented and other procedural languages have
never been able to deal with.

AOP complements object-oriented programming by facilitating another type of modularity
that pulls together the widespread implementation of a crosscutting concern into a single
unit. These units are termed aspects, hence the name aspect-oriented programming. By com-
partmentalizing aspect code, crosscutting concerns become easy to deal with.
Aspects of a system can be changed, inserted or removed at compile time, and even reused.

ftp://www6.software.ibm.com/software/developer/library/j-aspectj.pdf

 OOP-object hierarchy
"A language will be called object-oriented if it is object-based and additionally requires that
objects have classes and classes have inheritance:
object-oriented = objects + object classes + class inheritance." Peter Wegner

"Data abstraction
Objects should be described as implementations of data types." Bertrand Meyer

"public class Object
Class Object is the root of the class hierarchy. Every class has Object as a superclass. All
objects, including arrays, implement the methods of this class." Java

ftp://www6.software.ibm.com/software/developer/library/j-aspectj.pdf

AOP-style: A multi-paradigm view?

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 38

AOP-aspect heterarchy?

On the other hand it seems that AOP starts to think and act more heterarchically than
allowed by its systematics. With mechanisms such as crosscutting concerns (logging,
security, persistence) and then weaving parts together, elements of horizontal and com-
bining strategies enter the game and are looking for adaquate implementation.

"Areas organized around classes of parts of systems are called horizontal domains.
Obviously, specific systems or components within a domain share many characteristics
because they share many requirements." Generative Programming, p. 20

For AOP, aspects are basic, they contain pointcuts (set of joinpoints) and advices.
Their role is systematically similar to objects or class for OOP, they are basic. Again,
a unifying concept, aspects, is governing the hierarchy of the system.

AOP- hierarchy/heterarchy interaction?

The mixture of approaches of AOP is designing a tabular structure of horizontally
distributed aspects and vertically distributed concerns. That is, AOP is located in a ma-
trix of an interlocking mechanism of hierarchic and heterarchic dimensions.

This dynamics is well described by Czarnecki/Eisennecker in GP as follows:
"In a AOP system, components and aspects are woven together to obtain a system

implementation that contains an intertwined mixture of aspects and components."
"A model is an aspect of another model if it crosscuts its structure." This connection

has not to be stable "Because an aspect is relative to some model, it might be possible
to refactor the model so that the aspect ceases to be an aspect of the model." This flex-
ibility has to be handled. "One way to deal with this problem is to introduce a mediator
component that encapsulates these interaction patterns." But such kind of mediator are
working like buffers, they are not proper parts of the conception of interaction. Also
the "chiastic" exchange aspect/component is not modeled by an intrinsic mechanism
of the general programming paradigm. It would contradict its hierarchic order. "Thus,
we can refactor our design and turn an aspect into a component." GP, p. 265/66

Why all the fuss?

If we consider paradigms in the multi-paradigm approach of AOP simply as intra-
contextural applications of the as-abstraction, that is, only as contextually different par-
adigms, then the multitude of its paradigm can always be reduced–without serious
loss–to a uni-paradigm solution. Multitude then is simply a question of tradition, taste
and some economy. Lacking any strict conceptual foundation. Thus, what you can do
with AOP you can do it also with, say OOP. What programmers anyway always did.

Nevertheless, there is always some advantage to thematize and focus on everyday
practice and to bring it to an explicit and systematic treatment. But if you want more,
you may have to swallow the pill.

AOP-style: A multi-paradigm view?

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 39

6.2 Multitudes, simultaneity and profundity
6.2.1 Multi-paradigm view

"Thus, the impact of AOP on modeling methods will be fundamental. In order to understand
this impact, we have to realize that most of the current analysis, design, and implementation
methods are centered around single paradigms, for example, OO methods around objects
and structured methods around procedures and data structures. The insight of AOP is that
we need different paradigms for different aspects we want to build. This kind of thinking is
referred to as the multiparadigm view." GP, p. 331

There are not only different aspects to consider, which could be dealt by a common
programming paradigm, but also different paradigms for different aspects may be in-
volved. Because there is no programming paradigm which suits for all tasks in the
same way, different paradigms have to be put on scene to reach an optimal perfor-
mance. This multi-paradigm approach is strengthening the AOP position towards more
flexibility and complexity. Also not mentioned, it seems to be obvious, that those differ-
ent paradigms are not applied only successively but simultaneously. Hard problems of
mediating, combining and weaving different approaches into a successful play are
arising. Programming dynamic complexity isn’t easy and AOP is not yet delivering
strong enough methods to deal with it. As long as aspects are simply build on top of
OOP there is not much chance for a radical revision and enlargement of the core lan-
guage.

It seems that the multi-paradigm view as applied today, say by Ruby, Python, O’Caml
or ARS, is mainly a methodological way of viewing in different ways at problem solv-
ing methods and is not incorporating in itself a multiplicity of paradigms into the basic
definitions of the language. The methodological approach is more a question of pro-
gramming styles and is not touching the very structure of the language itself. In this
sense you can program FORTRAN-like in JAVA and OOP-like in LISP, and so on. Incor-
porating them all together in a family of programming styles.

Multi-paradigm vs. Poly-paradigm

Thus, we can distinct between multi-paradigm view as a successive application of
different paradigms and the more complex, multi-paradigm view as a simultaneous ap-
plication of different paradigms playing together to deal with a complex constellation.
Simultaneity of the application means that the complex constellation, problem complex-
ion, has to be considered at once in the light of different programming styles. A com-
plex situation has to be described by complementary statements and not by a
summation of different paradigmatic statements. Thus, it may be necessary that a com-
plex constellation is dealt at once, complementary, with an object-oriented approach
and a functional and an aspect-oriented and a XY-approach. Such a focussation of a
problem space is not only multi-paradigmatic but also multi-perspective highlighting the
complexion in the spectre of the light. This kind of simultaneous multitudes of para-
digms should be called poly-paradigm. Poly-paradigm is possible only if such a plural-
ity is incorporated into the very basic features of the architectonics of the complexion
of programming language(s). Thus, multi-paradigms are defined intra-contextural,
each contexture can realize its own multi-paradigm, while the poly-paradigm ap-
proach requires mediated contextures as realized in poly-contextural systems. Poly-par-
adigm in programming is thus not only a multitude of paradigmatic styles and
approaches a programmer can choose but part of the very architectonics of a complex
programming system. Multi-paradigmatic approaches are not dealing properly with
complex situations, they thematize them still as simple systems (Robert Rosen).

AOP-style: A multi-paradigm view?

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 40

6.2.2 Diagrams of multi- and poly-paradigms approaches
To visualize the idea of poly-paradigmatic programming in contrast to multi-program-

ming some diagrams may be introduced.
6.2.2.1 Multi-paradigm view as proposed by ARS.

 "A multiparadigm programming language is a programming language that supports more
than one programming paradigm."
http://en.wikipedia.org/wiki/Multi-paradigm_programming_language
http://en.wikipedia.org/wiki/Categorical_list_of_programming_languages
http://www.dmst.aueb.gr/dds/pubs/thesis/PhD/html/thesis.pdf

Hierarchical foundation of programming paradigms

Similar to the Ruby, Python, Oz, OCaml and other modern programming languages
ARS (Georg Loczewski) is proposing, and as far as I understand, founding and realiz-
ing, a real multi-paradigm approach from its very basic definition which is a kind of a
strict Lambda Calculus interpretation as its kernel language. All basic components of,
say functional, object-oriented and imperative programming styles can be defined on
the base of ARS (Abstraction+Reference+Synthesis). But obviously, they can’t be ap-
plied at once to a complex object (situation) simply because there are no such monsters
implied or involved in the game (of the ultimate lambda calculus). Nowadays, it is be-
coming quite fashionable to christen such multi-approaches as polycontextural. But this
is only name-dropping and confusion, a renaming, say of multi-perspectivism.

http://www.sics.se/%7Eseif/Publications/fdp.pdf
http://www2.info.ucl.ac.be/people/PVR/BCStalk.pdf

6.2.2.2 Poly-paradigm scenario as proposed by ConTeXtures

Heterarchical and hierarchical foundations poly-paradigms

Poly-paradigms are based in polycontextural programming languages where multi-
tude and complexity is incorporated in the very axioms of the design of the language.
Such an approach is not only poly-contextural but also dis-contextural considering the
abyss between contextures and at once trans-contextural in the sense of mediating
those different contextures together to an interplaying complexion.

ARS

Functional
Programming

Object Oriented
Programming

Imperative
Programming

multi-paradigm

ARS

Functional
Programming

Object Oriented
Programming

Imperative
Programming

ARS ARS ARS ARS

poly-ARS

ARS ARS

new
paradigms

Logic
Programming

ConTeXtural poly-paradigm

http://en.wikipedia.org/wiki/Multi-paradigm_programming_language
http://en.wikipedia.org/wiki/Categorical_list_of_programming_languages
http://www.dmst.aueb.gr/dds/pubs/thesis/PhD/html/thesis.pdf
http://www.sics.se/%7Eseif/Publications/fdp.pdf
http://www2.info.ucl.ac.be/people/PVR/BCStalk.pdf

AOP-style: A multi-paradigm view?

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 41

6.2.3 Hierarchies are not enough
A key intuition underlying our work is that simple hierarchies are not rich enough to

capture complex structures. In fact, we believe that any single ontological structure is
insufficient. As a result, we have been exploring a variety of mechanisms that make it
possible to view implement a system from multiple perspectives. One thing we believe
about these multiple perspectives is that in order to have significant power they must
be able to crosscut each other. That is, one perspective must be able to organize the
implementation in fundamentally different ways than other perspectives.

 The thread that has been common to our projects is rooted in the fact that the normal
rules of modularity do not suffice for describing quality software.

http://www2.parc.com/csl/groups/sda/

Simultaneity of paradigms and multiple perspectives are asked if those perspectives
should be able to crosscut each other in a serious way. But this exactly isn’t possible in
a hierarchic setting of conceptualization, modeling and programming.
6.2.3.1 Some more readings: Hyperspaces (H. Ossher and P. Tarr)

most powerful abstraction
Is AspectJ worth using? Grady Booch describes aspect-oriented programming as one of
three movements that collectively mark the beginning of a fundamental shift in the way soft-
ware is designed and written. (See his "Through the Looking Glass" in the Resources sec-
tion.) I agree with him. AOP addresses a problem space that object-oriented and other
procedural languages have never been able to deal with. Within a few weeks of my intro-
duction to AspectJ, I've seen it provide elegant, reusable solutions to problems I thought
were fundamental limitations of programming. It's fair to say that AOP is the most powerful
abstraction I've learned of since I began using objects.

Of course, AspectJ does have a learning curve. As with any language or language exten-
sion, it has subtleties that you need to grasp before you can leverage its full power. How-
ever, the learning curve is not too steep -- after reading through the developer's guide and
working through a few examples, I found myself ready to compose useful aspects. AspectJ
feels natural, as if it fills in a gap in your programming knowledge rather than extending it
in a new direction. Some of the AspectJ tools are a bit rough around the edges, but I haven't
encountered any major problems.

modularize the un-modularizable
Given the power of AspectJ to modularize the un-modularizable, I think it's worth using im-
mediately. If your project or your company aren't ready to use AspectJ in production, you
can easily apply AspectJ to development concerns such as debugging and contract enforce-
ment. Do yourself a favor and check out this language extension.
http://www-128.ibm.com/developerworks/library/j-aspectj/

patterns
 Patterns are indeed a sign of a break from the traditional von Neumann model of compu-
tation, because they name things that are somewhat orthogonal to the basic mappings of
code to executables we have in our heads.
Second, there's the growing understanding of the importance of multiple views in the sci-
ence and practice of software architecture

simultaneously–no tyrant
It is necessary for developers to be able to identify and encapsulate any kinds, or dimen-
sions, of concern, simultaneously. Further, all dimensions must be created equal—there must
not be “tyrant” dimensions that preclude decomposition along other dimensions.
http://www.research.ibm.com/hyperspace/Papers/index.htm

http://www2.parc.com/csl/groups/sda/
http://www-128.ibm.com/developerworks/library/j-aspectj/
http://www.research.ibm.com/hyperspace/Papers/index.htm

AOP-style: A multi-paradigm view?

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 42

multi-dimensional separation of concerns
These goals, while laudable, have not yet been achieved in practice. We believe this is be-
cause the set of relevant concerns varies over time and is context-sensitive--different devel-
opment activities, stages of the software lifecycle, developers, and roles often involve
concerns of dramatically different kinds. Thus, any criterion for decomposition will be ap-
propriate for some contexts, but not for all. Further, multiple kinds of concerns may be rele-
vant simultaneously, and they may overlap and interact, as features and classes do. We use
the term multi-dimensional separation of concerns (MDSOC) to refer to flexible and incre-
mental separation, modularization, and integration of software artifacts based on any num-
ber of concerns. It overcomes limitations of existing mechanisms by permitting clean
separation of multiple, potentially overlapping and interacting concerns simultaneously,
with support for on-demand remodularization to encapsulate new concerns at any time.
http://www.research.ibm.com/hyperspace/

overlapping or interacting concerns
We use the term multi-dimensional separation of concerns to denote separation of concerns
involving:
 * Multiple, arbitrary kinds (dimensions) of concerns.
 * Separation according to these concerns simultaneously; i.e., a developer is not forced
to choose a small number (usually one) of "dominant" dimensions of concern according to
which to decompose a system at the expense of others. This separation must be more than
just identification of concerns and of the code that pertains to each. It must include segre-
gation (encapsulation) that is sufficient to limit significantly the impact of change. This does
not mean that every change within a concern can affect only that concern; this is never pos-
sible. It means that, just as modules in a dominant decomposition localize the impact of
many kinds of change and limit the impact (propagation) of others, so must this be true of
any of the concerns. More precise definition of this requirement is an interesting topic for
discussion and for further research.
 * Overlapping or interacting concerns. It is appealing to think of many concerns as being
independent or "orthogonal," but this is rarely the case in practice. It is essential to be able
to support interacting concerns, while still achieving useful separation.
http://www.research.ibm.com/hyperspace/MDSOC.htm

no new languages
Realizations of MDSOC can permit incremental identification and encapsulation of con-
cerns, without requiring the use of new languages or formalisms.
http://www.research.ibm.com/hyperspace/index.htm

Myth 2: AOP doesn't solve any new problems
Reality: You're right -- it doesn't!
This is one AOP "myth" that is actually correct. AOP isn't a new computation theory that
solves yet-unsolved problems. It's merely a programming technique that targets a specific
problem -- modularization of crosscutting concerns.
http://www.nofluffjuststuff.com/speaker_view.jsp?speakerId=8

Blog Aspectivity
Blog Aspectivity , Ramnivas Laddad
http://ramnivas.com/blog/index.php?p=22

downloads
http://www.eclipse.org/aspectj/

http://www.research.ibm.com/hyperspace/
http://www.research.ibm.com/hyperspace/MDSOC.htm
http://www.research.ibm.com/hyperspace/index.htm
http://www.nofluffjuststuff.com/speaker_view.jsp?speakerId=8
http://ramnivas.com/blog/index.php?p=22
http://www.eclipse.org/aspectj/

AOP-style: A multi-paradigm view?

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 43

6.2.4 AOP and ConTeXtures
New approaches, like combining logics, fibred logics, polycontextural logics, all

dealing in different ways with problems and techniques of handling complex systems
are not yet recognized and applied to modern programming and conceptual language
development.

With that, we are close to the polycontextural and multi-paradigm approach of Con-
TeXtures and the question of mapping AOP strategies onto the polycontextural matrix
(PM) of ConTeXtures arises. What is called "intertwined mixture" or "weaving" and
"combining" may have a correspondence and a further explication in the concept of
mediation in polycontextural logics (PolyLogics).

Nevertheless, the crucial difference then between the design of AOP and ConTeX-
tures is this. AOP is described as a modeling method based on classic programming
languages while ConTeXtures aims to implement a multitude of paradigms and view-
points into the very basic constructs of its programming language as such. Thus, dy-
namic complexity in ConTeXtures is involved at the very beginning of its core language
and not as a late demand from complex concerns.

AOP is using meta-programming techniques but is based on a core language which
is excluding self-referential structures which would be basic for extensive reflectional
and meta-programming.

Modeling as deconstruction

Because new ideas don’t fall from the sky, polycontextural strategies have to be de-
veloped in a process of contrasting with existing new trends in logic and programming
developments.

The diagram should prevent decisively enough any confusions between the 4 do-
mains and their relations under consideration. The use of classic methods to explain
and formalize polycontexturality is not denying some abuse of terminology, but is in-
sisting on its clear positioning and its awareness of use/abuse strategies. Thus, the
study as use/abuse of involved concepts develops a certain kind of deconstruction of
modern programming paradigms with the aim to elaborate a way for an introduction
of polycontextural approaches to programming.

Obviously, the common terms are plurality, heterarchy, multitudes, mediation all be-
ing used in a way by the introduction of new programming paradigms which allows
to separate some strata from their traditional understanding, which are in strict concep-
tual conflict with the grounding postulates and requirements of the approaches. Those
strata, based on analogy/polysemy, and their de-sedimentation, are legitimating a de-
constructive reading and transformation towards a graphematic paradigm of program-
ming.

 http://www.thinkartlab.com/pkl/lola/ConTeXtures.pdf
Feature based approach: http://www.cis.upenn.edu/~bcpierce/papers/tt-jfp.pdf

AOP-modeling strategies Computational Model/Logic

PCL-modeling paradigms PCL-Computation&Logic

deconstruction transformation

AOP2PCL-implementation

founded-in

founded-in

http://www.thinkartlab.com/pkl/lola/ConTeXtures.pdf
http://www.cis.upenn.edu/~bcpierce/papers/tt-jfp.pdf

AOP-strategies onto PM

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 44

7 AOP-strategies onto PM
The programming paradigm of ConTeXtures lives from the "2-dimensional" distinc-

tion of reflectional and interactional strategies of computational processes. Both togeth-
er are implemented in the polycontextural matrix (PM). Thus, it seems to be quite
natural to model and implement the 2-dimensional approach of AOP into the frame-
work of ConTeXtures. Additional "patches" to existing programming paradigms are
not doing the job properly because they are nevertheless based on a "one-dimension-
al" programming approach lacking any real orthogonality/transversality.

7.1 Overview of AOP
"In AOP, one considers aspects of concern applicable across multiple classes and methods.
Thus AOP is said to address cross-cutting concerns. Aspects consist of advice, which are
methods designed to intercept other methods or events according to specified criteria. This
criteria is called a point-cut and it designates a set of join-points. A join-point (or code-point)
is the specific place within a program's execution where the advice can be inserted. In this
way, AOP is thought to provide a means of organizing code orthogonal to OOP tech-
niques.
 ^
 |
 OOP Prob Set.
 |
 +------------->
 AOP

Since AOP is a very powerful paradigm for abstracting programming solutions into sepa-
rate concerns, and shows great promise for improvements in code maintenance and reus-
ability, it seems only natural that an agile language such as Ruby would provide support for
this increasing popular pattern of design."
http://www.rubygarden.org/ruby?AspectOrientedRuby

Cutting, splitting and weaving needs conceptual space, a kind of a topology, to be
realized, otherwise it is producing paradoxes or it will be reduced to triviality. OOP is
not delivering necessary range because of its strict hierarchic main structure. To put as-
pect-oriented strategies onto OOP would need an additional dimension to allow or-
thogonal and transversal conceptualization and realization. Without a generalizing
approach, the aspects are badly "glued" onto the traditional hierarchy of OOP. Thus,
to be able to work, OOPxAOP should be more than AOP or aspect-augmented OOP.

"The problem of splitting what is intentionally supposed to be a single object is re-
ferred as object schizophrenia. [...] Another problem results from the fact that we have
to manage two object identities instead of one." GP, p. 294. Obviously, an object is
an object in this way of thinking. Any splitting or double use of it is generating onto-
logical problems. But an object in the schemes of as-abstractions, i.e. thematizations,
is "naturally" be cloned and duplicated at once into other objects. Not falling apart,
but being involved in the game of mediation, not ruled (out) by the master class Object.

In contrast: "The first real step in implementation is, of course, the creation of the transparent
subclass, the Cut. This requires an addition in the structure of an object's class hierar-
chy;[...]."
"After I had looked at AspectJ, I had found that aspects, although an interesting idea,
seemed to break object-orientation rather than enhance it. This implementation, on the other
hand, is strongly based on OOP, and thus works very well with it!"
http://www.rcrchive.net/rcr/show/321

http://www.rubygarden.org/ruby?AspectOrientedRuby
http://www.rcrchive.net/rcr/show/321

AOP-strategies onto PM

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 45

7.2 A general sketch of mapping AOP onto PM
This diagram shows a bank account
object with (account, person, secu-
rity) embedded in horizontal con-
cerns, aspects of logging, general
security, persistence in a software
system. It turns out that the handling
of the environment takes a great
deal of interest and maintenance,
while the business program is of
quite simple structure. But this static

situation turns into an opposite picture if interests are focussed on the environment, say
security. Then, the security concerns are primary and the business application becomes
secondary. AOP is not offering any mechanism to deal with dynamics of this kind.

The idea behind a mapping of AOP or OOP onto the proemial matrix PM is inspired
by the possibility of a chiastic dynamization of the main concepts of AOP in the play
and their distribution along the dimension of reflectionality and interactionality of me-
diated systems. Thus, a heterarchic cut is deliberating the main concepts from their hi-
erarchy and is involving them into chiastic interplay. Between objects, classes, aspects,
domains, viewpoints, etc., hierarchies are established only as temporary frozen chi-
asms. The whole game is played as an interplay of heterarchy and hierarchy.
7.2.1 Parallel computations of singular mediated systems

The diagram shows 3 parallel distributed and mediated programming systems.

In this case, each system works isolated at OiMi without interaction with its neighbor
systems or reflection into itself. Thus, it is pictured as the diagonal of the matrix PM.

 PM consists of loci which can be occupied by systems. In this
case, the dimensionality of PM is restricted to two, reflection-
ality and interactionality. Each system S in PM can be a full
programming paradigm (language) like OOP or AOP. Thus its
conceptual model consists of 3 parallel mediated hierarchies,
represented as 3 mediated trees.
As an example, each concern is focussed separately and has

its own representation. The business concern is treated separately, also the security
concerns and the persistency. The as-abstraction scheme, therefore, is: Security is se-
curity, bank account is bank account, logging is logging and persistency is persistency.
But those self-identical features are, nevertheless, mediated together in a complexion
represented as the whole system.

M1 M2 M3 M1 M2 M3 M1 M2 M3

O1 O2

S100 S020 S003

#

O3

##

PM

O

M M M

S

3

1

1 2 3

100

()

()

��������

OO

M M M

S

O

M

2

1 2 3

020

3

1

��������()

MM M

S

2 3

003��������()

#

PM O O O

M S

M S

M S

1 2 3

1

2

3

1

2

3

∅ ∅

∅ ∅

∅ ∅

AOP-strategies onto PM

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 46

7.2.2 Interactional situation
Aspect abstraction as interactional as-abstractions.

The reflectional situation is considering an object as an object in the sense of the as-
abstraction "contexturei as contexturej in a poly-contexture".

Thus, the security aspect of the business aspect is treated while simultaneously the
security as security and the business as business aspect is under focus.

Co-operation: Interactions as commands

In the example there is an addressing from O2 to O1 and O3 realizing positioning
at once in O1 as O1M2 and in O3 as O3M2 while keeping O2M2 as the addresser
of O1 and O2 persistent. The same simultaneous autonomy of agents holds for O1
and O3. The complexity of the agents O1 and O3 are giving space to the possibility
of acceptance of the interaction of O2. Thus, it is not O1 as O1M1 itself which is ac-
cepting the addressing from O2 but O1M2 as a model of the interaction from O2 to
O1. In the diagram the mutual interaction of acceptance and rejection has to be inter-
preted, and is not visualized as such. That is, the action of O2M2 to O1M2 means,
that O2 is rejecting the job and addressing it to O1 and O1 mutually accepts the job
in offering computational space to O2 at O1M2.

The realization of an interaction, as described, can be understood as a co-operative
command. An agent or processor O2 is commanding on the base of realized interac-
tivity with agent O1 and O3, that is, of realized architectonics, to proceed a task of
O2M2 at O1M2 and the same with O3 to proceed at O3 a task of M2 at O3M2.

Traversal strategies and addressing

Interactional situations may give a hint how to deal in a polycontextural program-
ming environment with traversal strategies. Maybe surpassing the Law of Demeter, con-
cerning "information-passing", more flexible strategies of interaction are necessary.

Interactivity is not based on communication as information processing or message
passing in hierarchic systems. It can be described as the action of addressing an ad-
dressee which is able to accept the addressing by its own addressable structure. After
having been addressed and the addressing is accepted by the addressed and the ad-
dresser has recognized the acceptance of being addressed and the addressing is thus
established, information can be exchanged between agents in the sense of processual
communication. Thus, on the base of realized interactivity the informational aspects of
tasks can be considered. Only on the base of this interactional agreement information
exchange can happen. Obviously, this addressing activity is creating its own interac-
tional topology and is not depending on a pre-given hierarchic object domain.

M1 M2 M3 M1 M2 M3 M1 M2 M3

O1 O2

S120 S020 S023

#

O3

PM O O O

M S

M S S S

M S

1 2 3

1

2

3

1

2 2 2

3

∅ ∅

∅ ∅

()

��������

O O O

O

M M M

S

1 2 3

1

1 2 3

120()

()

O

M M M

S

O

2

1 2 3

020��������

33

1 2 3

023

M M M

S��������()

AOP-strategies onto PM

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 47

Acceptance and rejection

Therefore, the structure of interaction is always complex: at once realizing the ad-
dresser and the inner environment of the addressee. This simultaneity of inner and outer
environments of agents is involving a kind of structural bifurcation and a mutual actions
of acceptance and/or rejection of the involved agents based on complexity of their
architectonics. That is, the addressee has to give space (einräumen) to the addresser
to be addressed. To address and to accept to be addressed is a mutual action of at
least two agents in a common co-created environment. Self-addressing would be a
case of interactional reflectionality of an agent into itself. Interactivity therefore is a mu-
tual action of acceptance and rejection between different agents.

This scenario of acceptance and rejection has an operative representation in the
poly-logical laws of transjunctions. Transjunctions and multi-negations are the basic op-
erations of polycontextural logics. They are guiding the design of polycontextural pro-
gramming languages, too.
7.2.3 Reflectional situation

 Aspect abstraction as reflectional as-abstractions.

Reflectional situations are not modeled in classic conceptual modeling. A concept is
a concept. It makes no sense to construct the concept of a concept. It simply would be
a concept, again. But, say, the ’security of security’ is not only a possible reflection, but
a crucial question for real security systems.

The diagram shows a single reflection of system1into itself, a two-fold reflection in
itself of system2 and a single self-reflection of system3. Reflections as iterations or rep-
lications of objects need their own place to be implemented, embedded and realized.
Thus, the matrix PM is offering the iteration of O1M1 at locus O1M2. Similar, O2M2
is re-placed at O2M1 and at O2M3, and O3M3 at O3M2.

Reflections as simple iterations without re-placement of the reflected system are nev-
ertheless not excluded at each position of the constellation.

This reflectional situation is considering an object as an object in the sense of the as-
abstraction "namei as namej in a contexture".

Contextu(r)al modules

Reflections on security, security as security, meta-reflections on security, all need their
own loci to be realized. All main objects or agents of a system should be chiastified to
have full transparency and access to reusability of contextu(r)al modules.

Reflection: Security aspects of security; business aspect of business; etc.
Interaction: Business aspects of security; security aspect of business; etc.
Reflection+Interaction: Security aspect of security and business and persistency.

M1 M2 M3 M1 M2 M3 M1 M2 M3

O1 O2

S110 S222 S033

#

O3

PM O O O

M S S

M S S S

M S S

1 2 3

1

2

3

1 2

1 2 3

2 3

∅

∅

()

����������

O O O

O

M M M

S

1 2 3

1

1 2 3

110()

()

O

M M M

S

2

1 2 3

222����������

()

O

M M M

S

3

1 2 3

033��������

AOP-strategies onto PM

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 48

7.2.4 Interplay between interactional and reflectional situations
 Aspect abstraction as interactional and reflectional as-abstractions.

Even for a system of small and stable complexity highly complicated constellations
of intertwined interactionality and reflectionality are accessible. The diagrams, matri-
ces and bracket formulas are not presenting a calculus but are only simple tools to ex-
plain and demonstrate the main idea of polycontextural modeling and computing.

Conceptual analysis shouldn’t restrict itself to hierarchy producing is-abstractions.
To introduce different kinds of as-abstractions goes hand in hand with the introduc-

tion of new types of inheritance rules not only between objects, components, modules,
contexts but also between contextures, i.e., programming paradigms. Thus, aspects
can be considered as contextures and contextures can be realized as aspects. Reflec-
tionality and interactionality are, among others, two strong new kind of meta-program-
ming introduced at the very score of the programming languages. Polycontextural
programming is not primarily problem solving, exposed by methods and objects, but
reality construction involving the contextural dynamics of systemic points of view.

Modifying the computational system

Interactional and reflectional actions are augmenting the environmental space of the
computational systems considered as main systems. In the case of the examples, the
diagonal systems. What is a main system is depending on decisions and can change
into other modi of the environment. On the other hand, it is not excluded that results
from those environments will have the possibility to modify the computational systems.
Such a modification would then be mediated through the experiences of reflection and
interaction with the system itself and with its neighbor systems.

Again, all the proposed strategies are structural and functional conceptual consider-
ations, prior to any information processing. Thus, in no way to be understood as cy-
bernetic information processes. Information processing then is based on structural, i.e.,
architectonic constructions.

Open to reduction?

The main question remains: Is the enlarged system a conservative extension possible
to reduction? Conservative extensions are helpful in many ways but this is not changing
anything in their definition to be reducible. A good example is given by the program-
ming language ARS (Abstraction+Reference+Synthesis) in which all known program-
ming paradigms (styles) can be defined. Thus, say OOP, can be reduced, in principle,
also surely not practically, to ARS, which is a kind of a generalized lambda calculus.

M1 M2 M3 M1 M2 M3 M1 M2 M3

O1 O2

S111 S222/103 S033

#

O3

PM O O O

M S S

M S S S

M S S S

1 2 3

1

2

3

1 2 1

1 2 0 3

1 2 3 3

.

.

.

∅

()

����������

O O O

O

M M M

S

1 2 3

1

1 2 3

111()

()

()

O

M

S

M
M

S

2

1

100

2
3

003��

()

�������������������������� �S222

O

M M M

3

1 2 3

���������S033()

Abjects: Weaving and mediation in a polycontextural setting

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 49

8 Abjects: Weaving and mediation in a polycontextural setting
A simple example may concretize a little more the idea of disseminated aspects and

their interactional and reflectional activities.

"Aspect-oriented programming is a way of modularizing crosscutting concerns much like
object-oriented programming is a way of modularizing common concerns."
 http://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html

"The join-point is central to AOP. It is a specific place in program execution where other
code, i.e. advices, may be "inserted"."
http://www.rubygarden.org/ruby?AspectOrientedRuby/NotesRoughDrafts

The advice programming text and the aspect programming text are brought together
by the operation of weaving producing the final program text. The aspects are com-
posed by program texts distributed over different pointcuts involving joinpoints. Thus,
cuts are delivering the texts to the weaver to be woven with the advice text to produce
the full program.

At a first glance, the polycontextural approach is simply offering a tabular structure
to place and localize different program texts not accessible in existing languages. But
this is probably not simply a didactical offer but will have systematic consequences for
the whole programming paradigm. The main difference between OOP, AOP and the
idea of polycontextural programming as proposed in ConTeXture may first be seen in
the different use of logic and the command structure of the program. Despite the strong
modularization of the program into its aspects (modules) in AOP all aspects are ruled
together by one and only one logic and command structure. This monolitic structure is
not only running through all aspects and objects but is also guaranteeing the rationality
and operationality of the conceptual design of the aspect-oriented program.

Weaving vs. Mediation

Thus, weaving in polycontextural systems is in fact mediation. Different programming
texts are mediated together to build an interactional/reflectional compound system
where all components are defined by their own logic and command structure. Those
rationalities can even defer from each other by having different kind of logics in use.
Weaving, in contrast, is merging the textual parts together into the main programming
text which contains the conceptual frame and the general command structures. Medi-
ation, therefore, has not only to weave aspects together but also to organize different
logics to build a working cooperative compound system. On this base of mediated log-
ic aspects can then be distributed and mediated in a heterarchic order. Each heterar-
chic distributed aspect can incorporate all sorts of hierarchic organizations of its intra-
contextural components.

Objects + Aspects = Abjects

Aspects are modularizing crosscutting concerns, objects common concerns, the me-
diation of both, aspects and objects, are realized by the interlocking mechanism of ab-
jects. Abjects are the 2-dimensional strategies of programming, behaviors and
structures, dynamics and concepts, intertwined together in a complementary play
"[...]where identities (subject/object, etc.) do not exist or only barely so—double,
fuzzy, heterogeneous, animal, metamorphosed, altered, abject". (Julia Kristeva)

Saver, but weaker forms of mediation of logical systems than polycontextural medi-
ations are proposed by the projects of Combining Logics (Gabbay) and Logical Fiber-
ings (Pfalzgraf). Both should be applied to conceptualize programming.

http://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html
http://www.rubygarden.org/ruby?AspectOrientedRuby/NotesRoughDrafts

Abjects: Weaving and mediation in a polycontextural setting

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 50

8.1 From Objects to Aspects, Metapattern and Contextures
8.1.1 ARS-OOP approach to bank account

http://www.aplusplus.net/bookonl/node142.html

Why should we heterarchize this bank account model?
As we can see, all the modules are quite autonomous defined and embarrassed only by the
clam of self which is organizing the modules/objects into a hierarchic order to function as
an OO program.
One reason could be the constellation of many different accounts belonging, say to the
same user. For each account the particular objects with their specific attributes has to be
defined and put together in some kind. The accounts can differ and change over time on all
parametric levels: currency, type of printing, etc. In an extreme situation they can even differ
in their arithmetics and logic of the accounts, and nevertheless they have to cooperate and
work as a complex account.
In a heterachic setting, new features and new modules can easily added and old modules
can put to sleep without costing the system anything.
This can be done more efficiently than in re-programming the users accounts into one big
new OO constellation. Anytime the user is changing the attributes or the number of accounts
this procedure has to be repeated. This kind of flexibility of modularization surely was a
main attempt of OOP.
ConTeXtures differs from OOP in choosing additionally to the hierachic organization of the
objects the new organizational dimension of heterarchy which deliberates the modules from
their hierarchic encloser and offers space for more autonomy and interactivity with the in-
volvement of contextures.
In other words: the root or self is simply an object next to other objects.
Ontologically speaking this says that the whole is taken as a part in another contexture.
The connection between different objects in different contextures is not a link but an interac-
tion between contextures. Even a single class, here account, can be put into a heterarchic
setting reflecting its intrinsic structure. (DERRIDA’S MACHINES 2003)

define make account

lambda balance

sel

�

� �� ��

�

−

()

ff

define make account

lambda balance

define

�

�(� �)

−

��

�(�)�

����

get balance

lambda

balance

−

define deposit

lambda account

define bala

�

�(� �)

� nnce

add balance amount� �

�������������

()

���������������balance

define print account

lambda

ndisp balance

�

�()

!�

−

(()

define self

lambda msg

if equaln msg one

�

� �()

� �� � �(()
����������������������

� ��

balance

if equaln�� �

��������������������

� ��

msg two

deposit

if

()

eequaln msg three

withdr

� �

������������������

()
aaw

if equaln msg four

print account

false

� �� � �()
−

define withdraw

lambda amount

if gep bal

�

�(� �)

�� � aance amount

lambda

define balance

su

� �

�(�)

� �

�

()

bb balance amount

balance

� � �()

false

http://www.aplusplus.net/bookonl/node142.html

Abjects: Weaving and mediation in a polycontextural setting

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 51

8.2 Metapattern approach
The metapattern approach was introduced by Pieter Wisse to dynamize object-ori-

ented programming. His situations are producing aspects.
"Compared to an object that (only) exists absolutely, an object believed to exist in a multi-
tude of different situations can unambiguously be modeled – to be equipped – with corre-
sponding behavioral multiplicity. [...] The radical conclusion from the orientation at
situational behavior is that an object's identification is behaviorally meaningless. [...]
Traditional object orientation assigns identity at the level of overall objects. Context orien-
tation replaces this view of singular objects with that of plurality within the object; the object
always needs a context to uniquely identify the relevant part of an overall object, which is
what identifying nodes regulate. When behaviors are identical, no distinction between con-
texts is necessary." Pieter Wisse, http://www.wisse.cc

Metapattern of bank account
Heterachizing the OO-approach
of the bank account example is
giving each component some de-
gree of contextual independence
but it is not yet delivering a mech-
anism of mediating the parts to-
gether. Some similarities of the
metapattern approach to the as-

pect-oriented approach are nevertheless to observe. Not only the decomposition is sim-
ilar but the use of "self" understood as an empty/bare class is common. Maybe, there
are no objects, but only behaviors in contexts/contextures.

8.3 Aspect-oriented approach to bank account
 "AOP is not just buzzword. It's not just callback, it's not just Ruby's MixIn?, it's not just Py-
thon's metaclass, it's not just C++'s template. AOP can be implemented/considered as a
subset of metaprogramming...an important subset that stands on its own. AOP deserves its
name, because one really can think and program in "aspects" instead of "objects". That
being said, I have never seen an example of purely aspect-based program. So, I thought
I'd write up one."
http://mail.python.org/pipermail/python-list/2003-November/193337.html

"Notice that we have started with
a bare class with no attributes. All
the features of the class Account
have been implemented by as-
pects, instead of interfaces or base
classes."
Also this approach gives as-
pects independence and flexi-
bility and the pattern is not
restricting additional aspects
the whole construction is sub-
sumed under a main class, the

class Account. This class is highly abstract, it has "out-sourced" all possible determina-
tions to its aspects. Now, everything is an aspect ruled by a general object. The meta-
pattern approach, also only descriptive and not operational, tries to implement another
strategy to build identifiable objectionality: by a kind of mediation of different contexts
and points of view.

 account

balance deposit withdraw print self

class Account

aspect BalanceKeeping

{ }
{ }��� �

����

���

aspect AccountStatus

aspect Withdr

{ }
aawalLimit

aspect AccountAspects inhe

�

��� :

{ }
 rrits BalanceKeeping

,

 �������������������������AccounttStatus,

�

 ������������������������� �WithdrawalLimit { }
��endow Account with AccountAspects

print Ac

 ccount codeString. ()

http://www.wisse.cc
http://mail.python.org/pipermail/python-list/2003-November/193337.html

Abjects: Weaving and mediation in a polycontextural setting

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 52

Hung Jung’s aspect-oriented bank account approach

//---
class Account {
}

//---
aspect BalanceKeeping {
 real balance
 method withdraw(amount) {
 this.balance = this.balance – amount
 }
}

//---
aspect AccountStatus {
 bool enabled
 codeblock check_status {
 if not this.enabled:
 raise AccountDisabledException
 }
 method withdraw(...) { // this meta-method is overriden later
 this.check_status
 this.withdraw.code
 }
}

//---
aspect WithdrawalLimit {
 real daily_limit
 real withdrawn_today
 codeblock check_and_update_withdraw {
 new_withdrawn_today = this.withdrawn_today + amount
 if new_withdrawn_today > this.daily_limit:
 raise WithdrawalLimitExceededException
 &inner_code
 this.withdrawn_today = new_withdrawn_today
 }
 method withdraw(...) { // this meta-method is overriden later
 check_and_update_withdraw {
 ...
 &inner_code = this.withdraw.code
 ...
 }
 }
}

//---
aspect AccountAspects: inherits BalanceKeeping,
 AccountStatus,
 WithdrawalLimit {
 method withdraw(...) {
 check_status
 check_and_update_withdraw { // this meta-method overrides
 ...
 &inner_code = this.withdraw.code
 ...
 }
 }
}

//---
endow Account with AccountAspects
print Account.codeString()

Hung Jung Lu posted this program with a well written analysis of the conception of
aspect-oriented programming in contrast to OOP. It is important to see that the program
starts with an abstract class without any attributes. In the AOP "ontology" attributes of
objects are aspects. It should be mentioned that aspects are depending on viewpoints
which can change. Thus, aspects are behaviors of interactional/reflectional type.

Towards a polycontextural approach of modeling

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 53

9 Towards a polycontextural approach of modeling
A key intuition underlying our work is that simple hierarchies are not rich enough to capture
complex structures. In fact, we believe that any single ontological structure is insufficient. As
a result, we have been exploring a variety of mechanisms that make it possible to view im-
plement a system from multiple perspectives. One thing we believe about these multiple per-
spectives is that in order to have significant power they must be able to crosscut each other.
That is, one perspective must be able to organize the implementation in fundamentally dif-
ferent ways than other perspectives.
 The thread that has been common to our projects is rooted in the fact that the normal rules
of modularity do not suffice for describing quality software.
http://www2.parc.com/csl/groups/sda/

9.1 Heterarchy UML diagram

The conceptual graph of the UML heterarchy diagram may highlight its structure
more directly.

It shouldn’t be misleading
to read the diagram as
(methodological) hierar-
chy between the terms
Heterarchy, Hierarchy
and Entities. The addi-
t i ona l t e rms Mode l ,
Frame, Port, Relation and
Link are defining the
structure of the interac-

tion of the different hierarchies and their entities.

An extensive study of the history and logic of heterarchy is given by E. von Goldammer, at:
http://www.vordenker.de/heterarchy/a_heterarchy-e.pdf
Limits of modularity: http://www.thinkartlab.com/pkl/media/siemens-schwarzwald.pdf

Heterarchy

Hierarchy

Entities

Frame
Model

Port

Link

Relation

http://www2.parc.com/csl/groups/sda/
http://www.vordenker.de/heterarchy/a_heterarchy-e.pdf
http://www.thinkartlab.com/pkl/media/siemens-schwarzwald.pdf

Towards a polycontextural approach of modeling

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 54

Distribution of compounds

The polycontextural approach consists of two main features. One is the distribution
of the aspects over different contextures, the second is the mediation of the aspects in
the polycontextural matrix. The matrix shows such a distribution, surely a highly spec-
ulative and raw one. The chosen distribution, (repl, id, id, id, id) is distributing the 5
aspects over 4 loci in the mode of identity (id) and 1 in the mode of replication (repl).
For some reasons the aspect "BalanceKeeping" is in a reflectional position to the as-
pect "AccountStatus". The choice of the kind of distribution depends on the distinctions
made in the operation of thematization. Which itself depends on the design of the ar-
chitectonics, not mentioned. All together, "bank account" is designed by "thematize".

The definition of the aspects may even be the same as in the previous modeling.
What is still missing in the scheme are the concrete rules of mediation, that is, the

rules of cooperation between the contexturalized aspects. This can be introduced with
the operator "elect", which is electing from the position of one contexture another con-
texture. The operator "elect" can have different trans-contextural definitions, all based
on the appropriate as-abstractions. Because each contexture is introduced as having
its own logic, arithmetics, command structure, etc. a lot of "negotiations" have to be
done between the contextures to be able to realize together the job of a bank account.
The aspect "printAccount" may be quite heterogeneous compared to the other aspects.
It easily can transform itself along its own logic into different realizations of printing.

All that sounds totally superfluous and not necessary at all. The point is the triviality
of the example. Obviously, all aspects are dealing with the same kind of arithmetics to
account the bank account. A more complex example could have to deal with all sorts
of incommensurability where there is no common concept available. But still coopera-
tion has to happen as mediation in accepting the differences in play.

samba repl id id id id

chose style AO

() (,� , ,� ,�)

� �

5

PP

thematize bank account

identify contextu

(�)

rre

define aspect AccountStatus

lambda

stat

{ eements}

�����

����������� �������������������������������∅ ��������������������� ���������������∅ ∅

identiify contexture

define aspect BalanceKeeping

llambda

statements

{ }

�

identify contexture

define aspect W

 iithdrawalLimit

lambda

statements

{ }

∅������ ��������������∅∅

∅��������������� ����������������������������� � ��������

�

∅

identify contexture

define as

 ppect AccountAspects

lambda

statements

{ }

∅�������

����������������� ������������������������ ��������∅ ∅ ������������ ��������

�

∅

identify contexture

de

ffine aspect printAccount

lambda

statements

{ }}

Towards a polycontextural approach of modeling

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 55

9.2 Hierarchical decomposition vs. heterarchic thematization
Why is a departure from hierarchic concept organization such a difficult enterprise?
OOP as a classic hierarchic system based on the is/has-abstraction is organizing its

concepts "naturally" by the inheritance property of different objects, classes, concepts
in use.

In the AOP example of BankAccount this is specially emphasized by the meta-con-
ceptual understanding of the aspect "AccountAspects".

This "second-order aspect "aspect AccountAspects" is introduced as:

aspect AccountAspects: inherits BalanceKeeping,
 AccountStatus,
 WithdrawalLimit

 "Notice that we have three parts to the above code: a class definition, an aspect definition,
and a final part to endow the aspect to the class. The last part is also known as the "aspect
weaver"."

endow Account with AccountAspects

Hung Jung’s programming example is strictly focussed an the aspect point of view
and the OOP aspects is in the background. But nevertheless, the aspects are defining
a class, i.e., class Account. Thus, aspects are determining objects.

AOP is a concept, so it is not bound to a specific programming language. In fact, it can
help with the shortcomings of all languages (not only OO languages) that use single, hier-
archical decomposition.

Where the tools of OOP are inheritance, encapsulation, and polymorphism, the compo-
nents of AOP are join points, pointcut, advice, and introduction.
http://www.developer.com/design/article.php/3308941

Aspect-orientation is not only a concept and neutral to programming languages, but
a design pattern, a style or stratagem of programming. Thus defining a programming
paradigm.

To cross-cut models is violating the hierarchic equivalence relation of the is-abstrac-
tion. In contrast, the as-abstraction is delivering multi-equivalence relations ruling inter-
nal hierarchies and supporting at once traversal heterarchic cross-cutting.

In another wording, abjects as the mediations of objects and aspects can be consid-
ered as exemplars of a two-dimensional is-abstraction: An abject is at once an object
an aspect. Thus, an abject is identified by a double identifier. It is not given in the act
of a simple identification. It has to be called twice at once. And such double-calls may
be even contradictory, thus not suitable for logical modeling. In contrary, morpho-
grams as rejects, don’t listen to calls at all. They are not accessible by calls. And there-
fore also beyond any logical approach.

Also Ruby is characterized as a multi-paradigm programming language it is basical-
ly an object-oriented (scripting) programming language based on a 1-dimensional is-
abstraction, thus not enabling genuine multiple inheritance and polysemy.

http://www.developer.com/design/article.php/3308941

Towards a polycontextural approach of modeling

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 56

Pseudo BNF Syntax of Ruby

PROGRAM : COMPSTMT

COMPSTMT : STMT (TERM EXPR)* [TERM]

STMT : CALL do [`|' [BLOCK_VAR] `|'] COMPSTMT end
 | undef FNAME
 | alias FNAME FNAME
 | STMT if EXPR
 | STMT while EXPR
 | STMT unless EXPR
 | STMT until EXPR
 | `BEGIN' `{' COMPSTMT `}'
 | `END' `{' COMPSTMT `}'
 | LHS `=' COMMAND [do [`|' [BLOCK_VAR] `|'] COMPSTMT end]
 | EXPR

EXPR : MLHS `=' MRHS
 | return CALL_ARGS
 | yield CALL_ARGS
 | EXPR and EXPR
 | EXPR or EXPR
 | not EXPR
 | COMMAND
 | `!' COMMAND
 | ARG

CALL : FUNCTION
 | COMMAND

COMMAND : OPERATION CALL_ARGS
 | PRIMARY `.' OPERATION CALL_ARGS
 | PRIMARY `::' OPERATION CALL_ARGS
 | super CALL_ARGS

FUNCTION : OPERATION [`(' [CALL_ARGS] `)']
 | PRIMARY `.' OPERATION `(' [CALL_ARGS] `)'
 | PRIMARY `::' OPERATION `(' [CALL_ARGS] `)'
 | PRIMARY `.' OPERATION
 | PRIMARY `::' OPERATION
 | super `(' [CALL_ARGS] `)'
 | super

And more!!!
http://www.ruby-doc.org/docs/ruby-doc-bundle/Manual/man-1.4/yacc.html

short:
PROGRAM : COMPSTMT
COMPSTMT : STMT (TERM EXPR)* [TERM]
STMT EXPR CALL COMMAND FUNCTION

http://www.ruby-doc.org/docs/ruby-doc-bundle/Manual/man-1.4/yacc.html

Towards a polycontextural approach of modeling

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 57

(Almost) Everything is a Message
All computation in Ruby happens through:
• Binding names to objects (assignment)
• Primitive controls structures (e.g. if/else, while) and operators (e.g. defined?)
• Sending messages to objects

Everything in Ruby that can be bound to a variable name is a full-fledged object.

But there are limits, too:

• Variable names are not objects
• You cannot have a variable reference another variable
• (no indirection to variables)
http://onestepback.org/articles/10things

Everything is object.
Ruby is the pure object-oriented language from the beginning. Even basic data like integers
are treated uniformly as objects.
ruby-man-1.4/preface.html

Ruby::
PROGRAM : COMPSTMT
COMPSTMT : STMT (TERM EXPR)* [TERM]
STMT|EXPR|CALL|COMMAND|FUNCTION

Ruby vs. ARS

It may be of interest to compare those limits to the
approach of ARS which seems not to be restricted
by such a lack of a certain self-referentiality. Ideas
to polycontextural programming language, like
ConTeXtures, are inspired by the approach of ARS.

ARS (Abstraction+Reference+Synthesis) provides a base for imperative programming and
object-oriented programming as well and can be applied to programming in almost any
programming language.
The generalization of the Lambda Calculus consists in defining the concept of abstraction
simply by `give something a name'. The name hides all the details of the defined. Abstrac-
tion thus defined requires an explicit definition of a name.
The Lambda Calculus does not allow for an explicit definition of a name. The only possibility
to associate a name to a value in the Lambda Calculus is by calling a function with an ar-
gument. This operation corresponds to the synthesis operation however and not to the cre-
ation of an abstraction. Lambda-abstractions in the Lambda Calculus are `per se'
anonymous.
http://www.aplusplus.net/bookonl/node18.html

ARS vs. ConTeXtures

ARS is based and founded on uniqueness. ConTeXtures are involved in multitudes.
Additional to ARS’s 3 principles of Abstraction, Reference and Synthesis, ConTeXtures
are introducing a fourth principle of dissemination as an interlocking mechanism of dis-
tribution and mediation, thus: ConTeXtures(m, n) = diss(m, n) (ARS).

identify

define

�

�

contexture Ruby

program OO

()
()

llambda

STMT

EXPR

CALL

COMMAND

FUNCTION

�COMPSTMT

http://onestepback.org/articles/10things
http://www.aplusplus.net/bookonl/node18.html

Diamond Strategies of Programming

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 58

10 Diamond Strategies of Programming
“Abject” is always negative, meaning “lowly” or “hopeless.” You can’t experience “abject
joy” unless you’re being deliberately paradoxical.
http://www.wsu.edu/~brians/errors/abject.html

10.1 Preliminary steps
Inheritance vs. mediation

Mediation as a heterarchic thematization is ruled by the proemial relation. It is not
simply an additional hierarchy, say a queer, horizontal, traversal, orthogonal hierar-
chy resulting in a double hierarchy of objects and aspects, realized in OOPxAOP. The
heterarchic interpretation of aspects, cross-cutting abstraction, as I try to thematize is
surely a radicalization of the existing activities and not a genuine interpretation of
AOP. Thus, e.g, it will not confirm the statement: "The form of AOP presented here is
much more powerful than the original proposal, fits in well with Ruby's overall design
and use, and so will nicely compliment the Ruby Way."

It is not enough to introduce additionally to objects the concept of aspects. If the in-
troduction of aspects is not reflected by a new concept which is mirroring the interplay
between objects and aspects there is no other chance than to linearize or hierarchize
the story under one of the categories. Mostly, the category object will dominate the
category aspects. In other word, the whole story is brought back home under the roof
of the general class as the common root of object and aspect. Such a homogenization
is unavoidable because of the underlying mono-contexturality of the whole program-
ming paradigm.

http://www.thinkartlab.com/pkl/media/callen.htm
Hierarchy and heterarchy

The chiasm under consideration is the proemiality between aspects and objects.
Heterarchic strategies are modeled by aspects, hierarchic by objects. Both together

in their togetherness are realized as abjects. Both in their processuality as mutual re-
jections of structurality of polycontexturality are inscribed as morphograms, short: re-
jects. Rejects are inscribing the processuality of the actions of objects and aspects
thematized from their polycontexturality. Morphograms are inscribing processuality in
abstracting/subversing any contexturality. Thus morpgograms/rejects are focussing on
two different aspects/features of processuality. The processuality of objects is realized
as classification/categorization/generalization/encapsulation. The processuality of
aspects is realized as traversing/cross-cutting/weaving. Thus, AOP should be consid-
ered properly not mainly as an aspect-centered approach but as a mediation of as-
pects and objects, thus OOPxAOP.

Efficiency of AOP, concerning programming code, seems to be very impressing, re-
ducing OOP code decisively. This shouldn’t come as a surprise. To work at once in 2-
dimensions, programming vertically and horizontally together, is of a much stronger
abstraction than programming in a 1-dimensional approach. If designed badly it can
rapidly change into its opposite and producing confusion.

http://www.wsu.edu/~brians/errors/abject.html
http://www.thinkartlab.com/pkl/media/callen.htm

Diamond Strategies of Programming

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 59

Diamond Programming patterns

Aspects of aspects, aspects as aspects, or Aspectivity of aspects,
Aspects of objects, aspects as objects, or Aspectivity of objects,
Objects of aspects, objects as aspects, or Objectionality of objects,
Objects of objects, objects as objects, or Objectionality of aspects.
Abjects as both at once: objects and aspects,
Rejects as neither objects nor aspects, but still in the game of both.
It may be reasonable to focus mainly on objects but it may as well be reasonable to

focus manly on aspects. Nevertheless, both are two different dimension of a mediated
system. A conscious programming should be aware and take into account all features
of the diamond programming pattern. From the point of view of object-oriented pro-
gramming aspects are special objects. From the point of view of aspect-centred pro-
gramming objects are special aspects. But this is an unnecessary reduction.

Diamond of object and aspect

With the invention of polycontexturality the interplay between objects and aspects
can be modeled without denying the autonomy of both categories. Abjects as mirrors
of this interplay are not a new super-category or super-class but a mediating part of
the game. Abjects are neither objects nor aspects. As mirrors they are at the same time
both at once, objects as well as aspects. The difference of the richness of the accep-
tance of both, abjects, and the poverty of rejection of both producing rejects is not yet
thematized at this step of conceptualization. That is, in the following, I will study the
interacting diamond of (object, aspect, abject) only. I also exclude iterations and ac-
cretions of the diamond pattern. However, it has to be seen that such an interdepen-
dency is purely functional. Aspects and abjects can be objectized by objects, abjects
and objects can be aspectized by aspects. Also, objects and aspects are abjectized
(mirrored) by abjects.

Abjects are over-determined, antagonistic, polyvalent terms. Rejects are, in some
sense, under-determined, or even zero-determined terms. Rejection, in its radicality is
accessible by the morphogrammatic abstraction which is eliminating any kind of se-
mantics. In a less radical sense, rejects are acting between contextures. They are re-
jecting a dual situation, like object/aspect, for a different category, say inject or
project which belongs to another contexture.

In other words, additional to the "substantial" conceptual strategy of object- and as-
pect-thematization which are usually in the fore-ground of programming, the functional
interplay of all three categories is of importance and can change from its back-ground
to its fore-ground function. Such conceptual and computational dynamics are "minimal
conditions" to a new design of programming paradigms.

object aspect

abject (as acceptance)

reject
(abject as rejection)

Diamond Strategies of Programming

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 60

Tectonics of AOP

Methods: computational components,
Objects: classificational components,
Aspects: cross-cutting components.
With this simplified tectonics of AOP a complex interlocking mechanism can be stud-

ied. Between all categories, the methods, objects and aspects, the combinatorics of
proemiality is playing the pragmatics of programming, design and development.

polycontextural/morphogrammatic programming framework

Why should we develop a polycontextural/morphogrammatic programming para-
digm? Once an approach is well working, like OOP or as a special example, Ruby,
new demands, new perspectives of programming occurs. Then, the paradigm has to
be changed, fixed, modernized to the scope with the new demands. Obviously, there
are two strategies to chose. One is to change the practical focus of programming while
still accepting the existing paradigm. The other is to change, adapt the language to
the new scenario. But this may turn out to be not very easy and probably also not spe-
cially efficient and helpful.

"So AOP is very important to me and I have been looking forward to having this as a core
feature of Ruby." From what I have read AOP should not be a core feature of Ruby because
it is too complex. Ruby should be capable of doing AOP but I would not change anything
fundamental about the Ruby creation process to make this a core feature. -- Bob

Relpy: Understandable, and I assure you we are working to minimize any such changes.
But AOP cannot be properly done without some changes to core Ruby, as has been recently
demonstrated.
http://www.rubygarden.org/ruby?AspectOrientedRuby/NotesRoughDrafts

And what happens next? There will be again a new demand on the way waiting to
be implemented and realized in a newly renewed programming language.

Polycontexturality/morphogrammatics could offer a different approach. Because
polycontexturality with its heterarchic organization new demands could be added
without any conceptual problems as new contextures. New contextures have to be me-
diated to the previous ones, but there is no need for a full change of all and everything.
This is not denying intrinsic difficulties and also not the necessary super-additivity of
any extension. Extensions can be seen as fusion, merging and evolutions.

The constellation I introduced in this paper is focussed on reflectionality/interaction-
ality of computation which doesn’t mean a systematic restriction to a 2-dimensional ap-
proach at all. Additional categories of behaviors would be covered by intervention
and interlocution. For other purposes, as many other "dimensions" as necessary can
be introduced because polycontexturality is itself introduced by a multitude of mediat-
ed contextures. Also, to speak about dimensions and dimensionality can be misleading
and has to be deconstructed to a more neutral topological terminology. Thus, new de-
mands, say, of context-, connex-, subject-, environment-, view-point-, graphematics-ori-
ented approaches could be added by mediation without destroying existing
paradigms and routines. Hence, proemiality and polycontexturality is open to complex
programming paradigms involving, say, objects, aspects, features, domains, genera-
tors, and so on. The book "Generative Programming" from Czarnecki and Eisenecker
presents a very broad an deep analysis of existing programming paradigms.

http://www.rubygarden.org/ruby?AspectOrientedRuby/NotesRoughDrafts

Diamond Strategies of Programming

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 61

Modularization of programming paradigms

This is leading to a modularization of programming paradigms (styles). A modern
text is living of its intertextuality of different styles. Intertextuality of texts are the neces-
sary condition for meta-reflection and self-modifications. Modularization from objects
to aspects and more, and many to come, to modularization of programming and de-
signing paradigms. Classic modularization principles are still governed by the meta-
phor and reality of classic computation. The model of classic computation is the Turing
Machine. Turing Machine computation is bare of any interactionality/reflectionality in
the strict sense (Peter Wegner). As much as aspects has to be woven and compiled to-
gether, the relative autonomous paradigm have to be mediated and brought together
by a new kind of compiler system.

Morphogrammatics

Morphogrammatics is just defined as rejection of existing concepts or stratagems,
like objects and aspects. Thus, it is not restricted in any way by the paradigmatic def-
initions of multi-programming paradigms. The subversion of morphogrammatics is still
difficult to think and to apply to programming, but it may open up a "space" of struc-
turations and transformations/metamorphosis which is independent of onto-semantic
constructs, concepts and classes, and their limitations.

Thematization and reflectionality/meta-programming

Thematization as designed in polycontextural programming is highly reflectional.
Classic programming is based on all sorts of abstractions. Abstractions are ontologic-
concept oriented, i.e., concepts are classes, classes have attributes of real things. This
kind of programming deals with real things, like BankAccount. But real problems/con-
flicts/antagonism today are not simple defined by things. They are complexions of in-
tertwined refections. And fucussation of things/classes/concepts/objects are still
thought in an ontological framework excluding reflectionality.

Reflection in the framework of is-abstraction is: reflection of reflection of something.
Focussed finally on the "something" and not on the processuality of reflection. Seymor
Pappert (Minsky, Society of Mind): "We can not think about thinking, without thinking
about something." And the other way round: "The relation between a picture and the
thing pictured cannot be pictured." (Wittgenstein) Both may sound quite reasonable,
but they aren’t. Today they are not even practical anymore. And worse, you cannot
prove them at all. They are exhausted belief statements. If you make the option for the-
matization instead of abstraction, the ontology reduces to the formula: X as X is X ==>
X is X. And again, there is no way back from is-abstraction to as-thematization. Is-ab-
straction is a reduction of thematization, and with it we are living in a reduced world.

Ontology vs. formal languages

Since the linguistic turn it is common to belief that formal languages, like logical sys-
tems, are neutral to ontology and therefore need an ontological interpretation, done
mainly by semantics. Again, there is nothing wrong with that, as long as it accepts its
own limits. From a transcendental-logical point of view this turn is forgetting its own
prerequisites, which are its signs, collected in a sign repertoire, called alphabet. Those
signs, which are the base of the ontology-neutral formalism, are themselves topics of
ontological reflections, namely as sign-events or sign-entities existing in this world as
sign-identities, whose laws are just the laws of (general formal) ontology (Husserl).
This stuff is well developed in: Ernst Tugendhat, Self-Consciousness and Self-Determination, MIT
Press 1986 (German 1979). Another approach is: Brian Cantwell Smith, On the Origin of Ob-
jects. A. The ontology of computation, MIT 1996, http://www.formalontology.it/smithbc.htm

http://www.formalontology.it/smithbc.htm

Diamond Strategies of Programming

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 62

10.2 Pattern of paradigms for the complexion object-aspect-abject
AA: Aspects as aspects, or Aspectivity of aspects,
AO: Aspects as objects, or Aspectivity of objects,
AB: Aspects as abjects, or Aspectivity of abjects
OA: Objects as aspects, or Objectionality of aspects,
OO: Objects as objects, or Objectionality of objects,
OB: Objects as abjects, or Objectionality of abjects,
BO: Abjects as objects, or Abjectivity of objects,
BA: Abjects as aspects, or Abjectivity of aspects,
BB: Abjects as abjects, or Abjectivity of abjects.

An object in general, ob-
ject(3), thus is a complexion
of the components object,
aspect, abject. The same
for aspects(3), and ab-
jects(3).

The new topic under computational consideration is a complexion mediating the cat-
egories object, aspect and abject together. Semiotically it is a triadic-trichotomic sign-
complexion in the sense of Charles Sanders Peirce.

 Objects(3):
 O-objects, A-objects, B-objects
 Aspects(3):
 O-aspects, A-aspects, B-aspects,
 Abjects(3):
 O-abjects, A-abjects, B-abjects.

 Collecting the components.

Historical remark: After more than 20 years
In the research report OVVS we have given 1985 a very first theory and model of the pro-
duction process at a computer manufacturer (Siemens AG, Augsburg, Germany) in a poly-
contextural setting. We thematized the process of production of mainframes from a
polycontextural and semiotic point of view. At this time OOP was just arriving and every-
thing had to be put into its terminology. But our analysis has shown very clearly the serious
limits of the OOP approach in programming and as an epistemological model. Not worth
to mention, that such an endeavour was totally displaced in time and ideology. Therefore,
we didn’t got the chance to elaborate our seminal approach more properly. Today (2006)
the situation sounds strikingly familiar. The missed chances, but also the lack of further ex-
planations of our study springs badly into the eyes, too.
Without being aware about the repetition of history I’m writing again some post-objectional
constructions. At least, the limits of OOP are obvious now for some people. And ideas of
plurality, multitudes, interaction, reflection and mediation are growing rapidly. In some
sense.

OVVS, Munich 1985:
http://www.thinkartlab.com/pkl/media/siemens-schwarzwald.pdf

object aspect abjects

object OO OA OB

aspect AO AA AB

aabjects BO BA BB

object aspect

abj
first level

−
−

�

�������� eect
second level

�����
−

A

O B

AA AO AB

OO

OA OB

BB

BOBA

http://www.thinkartlab.com/pkl/media/siemens-schwarzwald.pdf

Diamond Strategies of Programming

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 63

10.3 Augmenting complexity of Thematizations
Complexity of thematizations, or dimensionality of distribution, or topology of dis-

seminations, can naturally be augmented by adding new contextures. It shouldn’t be
forgotten that such an augmentation is super-additive, thus 3 elementary contextures
are producing 3 additional mediating contextures on higher level.

objects, aspects and injects (views) are on the same first
level of thematization, abjects and perspects are reflect-
ing the thematizations of the first level, and on a third level
projects are reflecting the thematizations of the second
level, thus projects are reflecting the activity of the whole
system.
The "shading" (Abschattung, Husserl) or aspectication of
all kinds of thematizations together may be collected, at

first, in the following matrix. In this matrix a first-order shading only is realized. That is,
possibilities of higher-order constellations like OAB, AOPB, etc. are not mentioned.

10.3.1 Conceptual graphs of project
 This is not the place to go into the theoret
ical problems of defining a complex theo
ry of signs which has to surpass the triadic-
ity of semiotics. Triadic-trichotomic struc-
tures are well modeled by 1-categories.
Mediations of such structures are better
modeled in n-categories.
The graph shows the commutative rela-
tions between different terms.

A complex entity, a complexion, is
composed of its constituents as given by
the conceptual graph. Also the graph
may not show it clear enough, there is
no fixed root. All components are of
equal relevance. And each can play to
be a root–or not. Thus, object is not the
origin, it may be a beginning. But there
are others, too.

object aspect inject
first level

− −
−

�

����� ������ �abject perspect
second level− ssecond level

project
−

�

����������� ��������������
third level−

object aspect abject inject perspect project

objecct OO OA OB OI OP OJ

aspect AO AA AB AI AP AJ

abject BO BA BBB BI BP BJ

inject IO IA IB II IP IJ

perspect PO PA PB PI PPP PJ

project JO JA JB JI JP JJ

object

aspect

abject

inject
perspect

project

object

aspect

abject

inject
perspect

project

Diamond Strategies of Programming

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 64

10.3.2 Composition/decomposition and duality of conceptual graphs
The complete graph of project can be decomposed into its triadic-trichotomic sub-

graphs. On the other hand, given the decomposites, the whole can be composed.
Between (X as Y) and (Y as X) a reflectional duality exists. Thus, objects can be seen

as (O-objects, O-aspects, O-abjects) or dual as (O-objects, A-objects, B-objects).
Object-aspect-abject-diagram

Objects(3):
 O-objects, O-aspects, O-abjects
 Aspects(3):
 A-aspects, A-objects, A-abjects,
 Abjects(3):
 B-abjects, B-objects, B-aspects.

Aspect-inject-perspect-diagram

 Aspects(3):
 A-aspects, A-injects, A-perspects
 Injects(3):
 I-injects, I-aspects, I-perspects,
 Perspects(3):
 P-perspects, P-injects, P-perspects.

Abject-perspect-project-diagram

 Abjects(3):
 A-abjects, A-perspects, A-projects
 Perspects(3):
 P-perspects, P-aspects, P-projects,
 Projects(3):
 J-projects, J-abjects, J-perspects.

Object-inject-project-diagram

 Objects(3):
 O-objects, O-injects, O-projects
 Injects(3):
 I-injects, I-objects, I-projects,
 Projects(3):
 J-project, J-objects, J-injects.

A

O B

AA AO AB

OO

OA OB

BB

BOBA

A

O B

AA AO AB

OO

OA OB

BB

BOBA

I

A P

 II IA IP

AA

AI AP

PP

PAPI

P

A J

PP PA PJ

AA

AP AJ

JJ

JAJP

I

O J

II IO IJ

OO

OI OJ

JJ

JOJI

Diamond Strategies of Programming

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 65

10.3.3 Duality principle in triadic-trichotomic diagrams

Object-aspect-abject-diagram

This 3x3-matrix of the categories object, aspect
and abject gives the 9 combinatorial possibili-
ties of their mutual thematizations in the mode
of the as-abstraction. Object as object, object
as aspect, etc. All together necessary to de-
scribe the AOP-system semiotically as a whole.

Objects(3): O-objects, O-aspects, O-abjects: (OO, OA, OB)
Aspects(3): A-aspects, A-objects, A-abjects: (AA, AO, AB)
Abjects(3): B-abjects, B-objects, B-aspects: (BB, BO, BA)

dual(OO, OA, OB) = (OO, AO, BO), thus object(3)
dual(AA, AO, AB) = (AA, OA, BA), and aspect(3) and
dual(BB, BO, BA) = (BB, OB, AB), and abject(3) have a dual interpretations.

Aspect as object. dual. object as aspect
Abject as object. dual. object as abject
Abject as aspect. dual. aspect as abject.

10.3.4 Self-dual constellations
There are a lot of interesting features given by the semiotic matrices and their oper-

ators. One more is the self-duality of constellations.
dual (OO, AA, BB) = (OO, AA, BB)
dual(BO, AA, OB) = (OB, AA, OB)
This short semiotic reflection, exemplified at the object-aspect-abject-diagram, shows

clearly that our entities (object, aspect, abject) are not in any sense classes with some
attributes. And questions about adequacy of attributes making them true or false are
not in the game at all. As-abstractions and its operations, like dualization, are second-
order reflectional concepts. Thus, their underlying logic, polycontextural logic, is not a
logic of truth and falsehood but a logic of reflection (and interaction).

Semantic or ontological questions are not lost but they appear on a first-order level
where we deal with the concepts in an isolated way, say as: object is object, aspect is
aspect and abject is abject, using the is-abstraction, and they will have some identifi-
able attributes or not.

Well, if programming is conceptual modeling, we made an important step forward
to a modeling of reflectional/interactional, cognitive and volitive, situations not acces-
sible until now to first-order concepts and techniques of modeling and programming.
"Cognition and Volition": http://www.vordenker.de/ggphilosophy/c_and_v.pdf

object aspect abjects

object OO OA OB

aspect AO AA AB

aabjects BO BA BB

Self dual constellations

dual OO OO

dual AA

−

() =

�

� �

(() =

() =

�

�

AA

dual BB BB

dual constellations

dual AO OA

dual BO O

�

�

� �

() =

() = BB

dual BA AB() =� �

http://www.vordenker.de/ggphilosophy/c_and_v.pdf

Diamond Strategies of Programming

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 66

10.4 Proemiality between aspects and objects
Full explanation of chiasms for an interactional situation

The wording here is not only "types becomes terms and terms becomes types" but
"a type as a term becomes a term" and, at the same time, "a type as type remains a
type". Thus, "a type as a term becomes a term and as a type it remains a type". And
the same round for terms. This modeling is easy applied to an aspect/object-chiasm.

Full wording for a chiasm between terms and types over two loci

Explicitly, first the green round,

"A type σ1.1 as a term M2.1 becomes a term M2.1 and as a type σ1.1

it remains a type σ1.1".

And,

"A type σ2.2 as a term M1.2 becomes a term M1.2 and as a type σ2.2

it remains a type σ2.2".

And simultaneously, the second round in red, the same for terms:

 "A term M1.1 as a type σ2.1 becomes a type σ2.1 and as a term M1.1

it remains a term M1.1".

And,

"A term M2.2 as a type σ1.2 becomes a type σ1.2 and as a term M2.2

it remains a term M2.2".

And finally, between terms M1.1 and M2.2, and types σ1.1 and σ2.2, a categorial
coincidence is realized. To round up, the same coincidence holds for terms and types
of LC1.2 and LC2.1. Thus, a type has two functions at once, a type as a type and a type
as a term. Therefore, this double meaning has to be distributed over different localiza-
tion of the complex constellation. Otherwise it simply would produce unnecessary con-
flictive overlapping. The matrix shows clearly the kind of distribution, the diagram is
visualizing the process of the chiasm involved. A more formal treatment can be found
at: http://www.thinkartlab.com/pkl/lola/poly-Lambda_Calculus.pdf

M1 M2 M3 M1 M2 M3 M1 M2 M3

O1 O2

S120 S120 S003

#

O3

M M M PM O O O

M S S

M S S

M S

1 2 3

1

2

3

1 1

2 2

3

∅

∅

∅ ∅
σ Μ

σ σΜ

σ
σ

http://www.thinkartlab.com/pkl/lola/poly-Lambda_Calculus.pdf

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 67

11 Rudy; some Dissemination of Ruby

11.1 Conceptual graph of Ruby

Ruby::
PROGRAM : COMPSTMT
COMPSTMT : STMT (TERM EXPR)* [TERM]
STMT|EXPR|CALL|COMMAND|FUNCTION

 An operator terminology may summarize
Ruby as COMPSTM with {STMT, EXPR} as
operands, {CALL} as operators and
{COMMAND, FUNCTION} as operations.
Ruby then is based on its uniqueness, rep-
resented by 1.

Distribution of 3 ruby to one big Ruby(3).

 General distribution pattern of reflec-
tional ruby1 and reflectional ruby2 and
computational ruby3.

Diamonds of Rubies.
ruby3 is not written explicitly.

identify

define

�

�

contexture Ruby

program OO

()
()

llambda

STMT

EXPR

CALL

COMMAND

FUNCTION

�COMPSTMT

operator={CALL}

operands={STMT, EXPR}

operation= {COMMAND, FUNCTION}

Ruby={COMPSTMT}

1

operator

operand

operation

1

operator

operation

operand

1

ruby1 ruby2

Ruby(3)

ruby3 Ruby O O O

M ruby ruby

M ruby ruby

m
i i i

i

i

()
+ +

+

∅
1 2

1 2

1 1 22

2 3

∅

∅ ∅+M rubyi

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 68

11.1.1 General poly-paradigm scheme Rudy as introduced for ConTeXtures
This general scheme handles a heterarchic distribution of different paradigms of pro-

gramming with their different scenarios, styles and topics based on complex architec-
tonics as sketched by the general horizon of thematization and computation.

ConTeXtures

horizon (m,n)sketch

complexity

co

-

mmplication

over

under

balanced

-

-

build

linear

t

- architectonics

aabular

circular

thematize

- scenarioss

reflectional

interactional

interventional

intterlocutional

choose

fu

– styles

nnctional

imperative

object

ical

contextura

�

log

ll

select

Boolean

num

– topics

eeric

symbolic

class

relational

reflectional

actiional

identify

�

-

contexxtures

operations

function

define

abstract

-

- ss

statementspropose -{ }

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 69

11.2 Example of a 3-contextural dissemination of Ruby
Reflectional and interactional distribution of the Ruby programming language over

different contextures. Additional to the dissemination of Ruby the operators elect are
ruling possible chiasms between intra- and trans-contextural programming constructs.

sketch

archi

�poly - paradigm�repl,�repl,�bif()
ttexture

thematize

identi

�tabular - 3

Ruby�()()3

ffy

identify

def

�

�

contextures

contexture

3

1.1

()

iine

lambda

STMT

EXPR

CA

�

�

program ruby

COMPSTMT

()

LLL

COMMAND

FUNCTION

[elect1 2.]]

identify�conntexture

program ruby

COMP

2.1

define

lambda

�

�

()
SSTMT

STMT

EXPR

CALL

COMMAND

FUNCTION

[]

elect1 2.

∅

identify

define

�

�

contexture

program ru
1.2

bby

COMPSTMT

()
lambda

STMT

EXPR

CALL

COMMAND

FUNC

�

TTION

[]

elect2 1.

identify

de

�contexture2.2

ffine

lambda

STMT

EXPR

C

�

�

program ruby

COMPSTMT

()

AALL

COMMAND

FUNCTION

elect2 1.[[]

∅

identify�ccontexture

program ruby

CO

3.1

define

lambda

�

�

()
MMPSTMT

STMT

EXPR

CALL

COMMAND

FUNCTION

[]

elect3 3.

∅

identify

define

�

�

contexture

program
3.3

rruby

COMPSTMT

()
lambda

STMT

EXPR

CALL

COMMAND

FU

�

NNCTION

[]

elect3 1.

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 70

11.3 Global and local structure of disseminated Ruby
At all occurrences in the distribution matrix of the disseminated Ruby programming

language all of its constituents are repeated and realized. All constituents and all laws
are placed intra-contexturally at their loci which, in this case, are designed by the re-
flectional and interactional dimension of the architectonics. This can be called the intra-
contextural inheritance of the distributed systems and it represents the local thematiza-
tion of the complex programming system. Thus, this distribution is, at first, homoge-
nous. Only the same kind of languages are distributed, i.e., the language of Ruby, thus
Ruby and no mix with other languages.

General scheme for identical mappings

As a complexion Ruby(3) has to be thematized from its global behavior. This is the
place where the so called super-operators (sops) enter the game. These super-operators
are ruling the game between different contextures in the modi of identity, replication,
permutation, reduction and bifurcation.

Super-operators for distributed Ruby

It turns out that the special case of an identical mapping is part of the general super-
operators. Even for the case of a single occurrence of Ruby, that is, for m=1. This po-
sitioning of a system or language, even for only once, as a mapping onto itself is cru-
cial and can be omitted only because of its singularity. Not to be aware of it is called
the Blind Spot of the system.

More discussion of Ruby
Ruby the Rival by Chris Damson, 11/16/2005
http://www.onjava.com/pub/a/onjava/2005/11/16/ruby-the-rival.html?page=1
James Duncan Davidson: Trying Something New
"And I think that's the real win from the recent attention on Ruby on Rails and the breakaway
from viewing the world with Java-colored glasses. It's not that Ruby on Rails is going to be
the next Java. Far from it. It's that Ruby on Rails helps to break this idea that there is "One
True Way." There's not. There are many different ways to solve a problem. And really, none
of them is the clear-cut winner. There's just places where one solution has advantages."

Also, Ruby, Postmodernism, Java, Lambda:
http://lambda-the-ultimate.org/node/1123

Ruby Ruby Rubym m
refl act sops

m() () →:� �
,�

(()

∀ ∈ ()
refl act

id i j s m

,�

:� , :���������������� � �.
���� ����������

.Ruby Rubyi j
id

i j() → ())�

Ruby Ruby Rubym m
refl act sops

m() () →:� �
,�

(()

=

refl act

sops id perm red bif

,�

� � ,� ,� ,� ,�rrepl

id i j s m Rubyi j

{ }
∀ ∈ ():� , :��������������� .(() → ()� � �

,�

���� ����������
.

id
i jRuby

perm i jj i j s m Ruby Ruby Ri j
perm() ∀ ∈ () () →:� , :� �,� � � uuby Ruby

red i j i j s m Ruby

j i

i

,�

,� :� , :���

()
() ∀ ∈ () ,,� � � ,�

,�

���Ruby Ruby Ruby

bif i j

j
red

i i() → ()
(() ∀ ∈ () () →:� , :���� ,� � ���i j s m Ruby Rubyi j

bif ()()
() ∀

� || ,�

� ,� :� ,

Ruby Ruby Ruby

repl i j i j

i j j

∈∈ () () →s m Ruby Ruby Ruby Ri j
repl

i:�� ,� � � |��� uuby Rubyi j()(),�

http://www.onjava.com/pub/a/onjava/2005/11/16/ruby-the-rival.html?page=1
http://lambda-the-ultimate.org/node/1123

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 71

Including the tectonics of the Ruby language into the polycontextural mapping we
get the general scheme as below.

This modeling is conservative in many senses, accepting the mapping from constitu-
ents to constituents as type trusty. There is no mapping from one type into another type
considered. Such "untrustful" mappings are part of metamorphic transformations in
complex formal systems.
11.3.1 Data structure of Ruby(3)

Some information about the involved data structure as objects, aspects and abjects
was introduced before. This has to be concretized in respect of its syntax with state-
ments and expressions.

STATEMENTs and EXPRESSIONs
Polycontextural systems are not based on statements and expressions but on intertex-

tuality between textual systems containing statements and expressions.
It is supposed that STATEMENT is mapped onto STATEMENT and in the same way

EXPRESSION onto EXPRESSION. Thus, on this level of conceptualization no chiastic
crossings between different categories, like STATEMENT and EXPRESSION, are in-
volved. But again, those mappings are ruled by the super-operators sops.

11.3.2 Call structure
Calls for COMMANDs and FUNCTIONs have to be distinguished as intra-contextur-

al calls and trans-contextural calls which are obviously given with the super-operators
of bifurcations and the architectonics of reflectionality and interactionality. Intra-contex-
tural topics are not considered in this proposal because they correspond more or less
to the well known topics of the language under consideration, here Ruby.

Ruby Ruby Rubym m
refl act sops

m() ()

 →:� �,�

(()

() ()

 →

refl act

sops
STMT STMT

,� :

:� � �3 3 SSTMT

EXPR EXPR EXPR

C

sops

3

3 3 3

()

() () ()
 →�:� � �

AALL CALL CALL

COMMAND

sops

3 3 3

3

() () ()

()

 →:� �

�::� � �COMMAND COMMAND

FUNCTION

sops

3 3

3

() (

(

 →
)) () () →

=

:� � �

��

FUNCTION FUNCTION

sops
sops

3 3

iid perm red bif repl,� ,� ,� ,�{ }

Ruby Ruby Rubym m
refl act sops

m() () →:� �
,�

(()

() ()

 →

refl act

sopsSTMT STMT S

,�

:� � �3 3 TTMT

EXPR EXPR EXPRsopsb

3

3 3 3

()

() () ()
 →�:� � �

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 72

11.3.3 Command structure of Ruby(3)

The command structure was until now only given by reflectional and interactional dis-
tributions and electors. Both are realized by the so called super-operators

sops ={id, repl, perm, red, bif}.
Further information is directly produced by the underlying logical system of the dis-

seminated programming language. This polycontextural logic is formalized as PolyLog-
ics. Additional to the distributed junctions and deduction rules, a complex apparatus
of transjunctional and multi-negational operators are included.

Thus, COMMAND is distributed as COMMAND(3) with junctions, negations, deduc-
tion rules (IF-THEN) and a family of transjunctions distributed over contextures.
11.3.3.1 If-Then-Else control structure disseminated

Lessons from ConTeXtures about electors and selectors.

If-abstraction in general:
One of the most basic operation in any programming language is to make a decision, to
select a block of code depending on the truth value of a certain argument.
Such an operation people have in mind, when they talk about IF-statements, IF-THEN-ELSE-
constructs, alternative structures and a few more.
We can very well say that the IF-statement has the function to select code to be evaluated
or executed. The IF-statement therefore is a function taking three arguments:

1.a condition having a certain truth value (true or false),
2.the first block of code and
3.the second block of code.

Because the selection of the code block to be evaluated or executed depends on the first
argument, we can look at the first argument as a selector.

Having thus analyzed the essence of an IF-function we may code it as a `lambda abstrac-
tion':

 (define if (lambda (sel a b)
 (sel a b)))

Remark: eager/lazy
Many programming languages have problems with such a construct, because their lan-
guage implementation evaluates the arguments before they are effectively passed to a func-
tion. This is in contrast to the function of the selector to select the code to be evaluated.
http://www.aplusplus.net/bookonl/node74.html

Defining sel Defining if Defining sel with elect

This is first the classic definition/introduction of the selector operator which is basic
to define the if-construct but it is set into a contexture which itself has to be identified.

identify contexture

define

lambda a

�

�

����
�(�

sel

���)

������ ���

b

sel a b()

�

thematize

lambda contextures

�(�)

�(� �)

�

()

�sel
3

��

�

�

������
�

elect

define

lambda

contexture

sel
i

i

((���)

������ ���

a b

sel a b()

identify contexture

define

lambda sel a

�

� �

�(� �

if

���)

����������� ���

b

sel a b()

http://www.aplusplus.net/bookonl/node74.html

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 73

Otherwise, as we know, all falls from the sky into our hands. There is, additionally,
as usual, some circularity involved. Thus, IF is defined by the selector operation which
is based itself on the operator sel.

To identify a contexture also needs a selecting operation. It may be called elector
(elect). Thus, given or chosen the elector we can define the selector more properly.

Because of the graphematic tabularity of ConTextures there are not "only two possi-
bilities to perform a selection". For each contexture there are intra-contexturally only
two possibilities to perform a selection. But between contextures, trans-contexturally,
there are as many new selectors as neighbor contextures. These new "selectors" should
be called electors. Electors are electing the election for selectors to perform each mu-
tually its selection.

That is, a selection can happen at once at different loci of a disseminated systems.
In other words, such a general selector as any other successive or procedural action
has to be realized in the two dimensions of intra- and trans-contexturality. Thus, a se-
lector as a single operation can be realized intra-contextural staying in the same con-
texture or trans-contextural switching to another neighboring contexture. A selector as
a complexion can be realized at once in different contextures. It could therefore be
called a "poly-selector". Such a poly-selector can be defined as an overlapping of an
intra-contextural selector "sel" and a trans-contextural selector, called elector "elect".

Thus, samba (elect, 1) = (sel).
The elector "elect" is (s)electing the contexture in which a selector "sel" is selecting

its linearly ordered atomic terms and elements.
Selectors are acting in a pre-given order, they are conventionally introduced, not pro-

duced, but inherited from logocentric semiotics. Electors are involved in the evocation
of new orders, new contextures, to give space for distributed selectors, positioning
them into the graphematic matrix. Distributed selectors are constructed in the graphe-
matic play of (s)electors and are not inherited from logocentrism.

Contextural decisions are
tabular with one dimension
involving selectors and the
other dimension electors.
Each position in a polycon-
textural programming lan-

guage is defined simul taneously by its electors and its
selectors. There are no selectors without electors and
there are no electors without selectors; both are design-
ing the field of polycontextural reasoning and comput-
ing.

This simply means, that the IF-abstraction for dissem-
inated Ruby has an intra-contextural dimension, which is given by the operator sel, and
a trans-contextural dimension which is introduced by the operator elect. Both together,
as the complex operator (s)elect, are ruling the basic control structures of IF-THEN-ELSE
in complex constellations.

A simple distribution of the IF-construct as IF(3)=(if, if, if) is demonstrating its use. The
operators of selection for if and the operator for selection of contextures elect are set
in the following pattern. Thus, the abstract mechanism of the IF-THEN-ELSE-construct is
distributed over 3 contextures without considering further distinctions, like condition of
mediation and reflection/interaction.

selectorel
ec

to
r

de
cis

ion

identify contextures

define

lambda

m

()

elector

��(�)

�

�

()contextures

elect contexture

define

m

seelector

lambda a b

sel a b

����

�������� ���

()
()

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 74

Distribution of the IF-condition over 3 contextures

Ruby: if
Syntax:
 if expr [then]
 expr...
 [elsif expr [then]
 expr...]...
 [else
 expr...]
 end

if expressions are used for conditional execution. The
values false and nil are false, and everything else are true.
syntax.html#if

The operator if in Ruby is pre-defined. It is one of the reserved words. (In ARS it is
derived from the operator sel.) Thus, it can only be used but not changed or involved
into transforming interactions with other operators. The polycontextural approach of
ConTeXtures, which is playing with a generalized and disseminated Lambda Calculus,
gives a kind of an explicit definition of the operator if. This is based on the selector
operator sel which is based on truth-constellations which again are based on sel. Thus,
also made explicit in the programming language ARS, the introduction is involved in
some circularity. This can be reflected and properly managed by a chiastic modeling
of the interdependency of sel/if by a polycontextural distribution in ConTeXtures.

Comment on Implementation: mediators + compilers

It shouldn’t come as a big thing to think the realization, implementation and acces-
sibility as distributed computational systems interacting with each other and being pro-
grammed and represented by a multitude of GUIs. In the simplest case representing a
multitude of windows accessible to one or more programmers at once. In a more gen-
erous setting the systems can be distributed over a network, say Internet, and mediators
similar to compilers would have to mediate the distributed programming on mediated
poly-processor computing systems. Mediators would have to parse the different pro-
gramming approaches in respect to their mediability. That is, conditions of mediation
would have to be checked, optimized and debugged. Thus, the chain of realization
from programing to compiling has first to be augmented by a system of mediation. The
new paradigm of realization now is programming-mediating-compiling in distributed
and mediated programming languages.

sketch

architectu

�poly - paradigm (id, id, id)

rre

thematize

identify

�

�

tabular - 3

if, if, if()
��

�

�(� � ��)

����

contexture

define

lambda sel a b

if

�������� � ��sel a b()

[]

elect

identify conte� xxture

define

lambda sel a b

�

�(� � ��)

����������

if

�� � ��sel a b

ele

()

cct

identify contexture

d

[]

�

eefine

lambda sel a b

sel a

�

�(� � ��)

����������� �

if

���b

elect

()

[]

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 75

11.3.4 Conditions of mediation
Because of the narrowness of a mediated 3-contextural system not all possible com-

binations of operators are fulfilling the conditions of mediation. Some hints are given
below. It is not the place to give a more developed approach to mediation.

Samba is the lambda of ConTeXtures.
 samba ((true, false), 3) =
 [define truei ord falsei, i=1,2,3
 define true1 coinc true3
 define false1 exch true2
 define false2 coinc false3]

T1 F1

T2 F2

 F3 T3

samba horizon

thematize

() ()

(

3
1id,�red ,�red1 −

 ttrue,�true,�true)

identify contexture

defin

 1

ee

lambda ab

a

true1

�(� �)

�������������������

∅ ∅�� ���

identiffy contexture

define

lambda

 (�a�b�)

2

true1

�������������������a

∅ ∅�� ���

identify contexture

define

3

truee1

lambda a b

a

�(��)

������������������

∅ ∅

� ���

samba i horizon

thematize

() ()

(

3 d,�red ,�id

tr
1 −

 uue,�true,�true

)

identify contexture

define

 1

ttrue1

lambda ab

a

�(� �)

�������������������

∅� ������������������ �∅

identify contexture

define

lamb

2

true1

dda

a

 (�a�b�)

������������������

∅� ����������������

������������� ��������������������� ��∅ ∅

identify con ttexture

define

lambda a b

3

true3

�(��)

��������������������a

Scheme�local�true���false

identify contextur ee

define

lambda a b

i

true
i

�(��)
��������������������a

��

identify contexture

d
i

eefine

lambda a b

false
i

�(��)
��������������������b

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 76

The same procedure as for the
Boolean true has to be applied
for the Boolean false.
A mix of the Booleans true and
false don’t get enough logical
space in a 3-contextural setting.
For m=4, negations become
commutative and thus some inde-
pendency is possible.

11.3.5 Violating the mediation rules
As an example of violation of the conditions of mediation the case for (or1, if2, or3)

is considered.

samba horizon

thematize

() ()

(

3 id,�red ,�id

tr
3 −

 uue,�true,�true)

identify contexture

define

1

ttrue1

lambda ab

a

�(� �)

�������������������

∅��� ������������������

������������� ���������������������

∅

∅ ���

identify contexture

define

lambda

 (

2

true3

��a�b�)

������������������a

∅������������ ������������������ ����∅

identify contexture

define

lamb

3

true3

dda a b

a

�(��)�

�������������������

sketch

architextur

�poly - paradigm(id,�id,�id)

ee

thematize

identify

�

()

tabular - 3

or,�if,�or

 ccontexture

define r

lambda a b

if

1

 o

 ���

()

(� ��)

����

a a b

��� ����������������������������

���������

∅ ∅

∅���������

identify contexture

define

lambd

2

if

aa b true false

b true false

 ����

()

(�� � �)

∅����� ������

����������� ������������������������� �������∅ ∅ ���
(

identify contexture

define

lambda a

3

or

bb

if a a b

 ��

)

(�)

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 77

The easiest way to demonstrate the incompatibility of the combination (or, if, or) we
can ask for its Boolean representation. This approach can be generalized and applied
to c-obs in general delivering a method to check compatibility and realisability of me-
diations, esp. of poly-topic mediations.

(id, id, id)
(bdisp! (or1, if2, or3):
(bdisp! or1)
(bdisp! if2)
(bdisp! or3)

(bdisp! or1):
(bdsp! or true1 true1) ––> true1
(bdsp! or true1 false1) ––> true1
(bdsp! or false1 true1) ––> true1
(bdsp! or false1 false1) ––> false1

(bdisp! if2):
(bdsp! if true2 true2) ––> true2
(bdsp! if true2 false2) ––> false2
(bdsp! if false2 true2) ––> true2
(bdsp! if false2 false2) ––> true2

(bdisp! or3):
(bdsp! or true3 true3) ––> true3
(bdsp! or true3 false3) ––> true3
(bdsp! or false3 true3) ––> true3
(bdsp! or false3 false3) ––> false3

If we confront this result with the proemial conditions of our truth values, esp. false2
coinc false3, we observe a collision between the two results:
(bdsp! if2 false2 false2) ––> true2
(bdsp! or3 false3 false3) ––> false3

The values true2/false3 are neither equal nor analog, they are different and belong
to the exchange relation and not the coincidence relation, like, true1/true3, false1/
true2 or false2/false3. Thus, the mediation of the combination (or1, if2, or3) is not
realized. According to the condition of mediation, based on the proemial relation of
the truth values, it is enough to check the diagonal values of the binary constellation.
Thus:
(bdisp! or1)
(bdsp! or true1 true1) ––> true1
(bdsp! or false1 false1) ––> false1
(bdisp! if2)
(bdsp! if true2 true2) ––> true2
(bdsp! if false2 false2) ––> true2
(bdisp! or3)
(bdsp! or true3 true3) ––> true3
(bdsp! or false3 false3) ––> false3
===> (bdsp! if false2 false2) ≠≠≠≠≠≠≠≠ (bdsp! or false3 false3),
 (bdsp! or true1 true1) == (bdsp! or true3 true3),
 (bdsp! or false1 false1) == (bdsp! if true2 true2).

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 78

Two accepted mediations of distributed if: (if1, if1, if3) and (if1, if1, if1)

Comments

The distribution of the if-construct in a 3-contextural programming language is very
reduced because of its low complexity (m=3) and the necessity to fulfill the conditions
of mediation. If we restrict our interest to local situations only then we can de-couple
the linked systems and study the behavior of the system in focus locally. But mediation
means, that we have to deal with several contextures. Thus some dynamic of local/
global categories are at place. The local consideration is not reduced to one and only
one contextural system. Local/global is a functional concept. Several systems can be
involved and be considered local. But this makes sense only for systems of higher com-
plexity. Thus, to study a mediated 3-contextural system demands a global approach.

The above two examples are showing how a global realization of the mediation of
3 if-constructs can be realized with the help of the super-operator reduction. That is, in
the first case, contexture2 is simply mapped into the locality of system1. And for the
second case, contextures2 and 3 are mapped into the locality of contexture1, too. It is
obvious that other constructions thus are possible to produce other distributions and me-
diations.

Because we are still very much constructing polycontextural systems bottom-up,
along the guidelines of existing systems, aspects which are independent of those clas-
sic constructs are not yet emphasized enough. That is, the interplay between reflection-
al/interactional computational systems will be prior to questions of truth-semantics.

�

�

sketch

architecture

 (id, red, red)

tabular -33

if, and, orthematize

identify contextur

�

�

()
ee

define

lambda sel a b

s

1 1.

�

����
�(� ���)

������

if

eel a b���()

elect

identify contex� tture

define

lambda a b

1 2.

�

����
�(���)

������

and

iff����a b a()

elect

identiffy contexture

define

lambda a b

�

�

����
�(���

.1 3

or

))

������ ����if a a b()

elect

�

sketch

architec

�poly - paradigm (id, red , id)1

tture

thematize

iden

�

�

tabular - 3

if, �if, �if()
ttify

define

lambda sel a

�

�

�(� � �

contexture

if
1.1

bb

sel a b

�)

����������� � ��()

identify

define

�

�

contexture

i
1.2

ff

lambda sel a b

sel a b

�(� � ��)

����������� � ��()

∅ ∅������������� ������������� �����

�

�

�

identify

define

lambda

contexture

if
3.3

((� � ��)

����������� � ��

sel a b

sel a b()

��

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 79

11.3.6 Some if-based control structures (IF-THEN-ELSE) for Ruby(3)

Complexions of if-structures are closely related to the distribution
of their underlying logical truth-values. Thus, if-complexions are
based on mediated truth-values as it was shown before. There are
as many IF-THEN-ELSE structures as there are if-complexions.
There is not only one concept of the IF-THEN-ELSE construct regu-
lating conditional situations. Different conditional if-rules of differ-
ent strength and different scope of distribution are opening up a
complex development of if-based control structures. With elect
cross-over control structures or "bridges" are easily defined.

A distribution of IF-THEN-ELSE control structure based on (if1, if1, if3) is shown below.

Similar constructions are ac-
cessible for imperative control
structures, like while. And
again, poly-paradigmatic
mixtures of control structures
are well implemented. Thus,
e.g. (IF-THEN-ELSE, WHILE,
INHERIT) could be realized in
a 3-contextural situation.
After the polycontextural ma-
trix with its architectonics is in-
t roduced, dis tr ibut ion of
formal systems and their con-
structs is not a big thing. To
manage the conditions of me-
diation, which together with
the distribution constitutes a
polycontextural system is
slightly more difficult and de-
pends strongly on the deci-
sion on which level of the
tectonics mediation has to be
realized. An appropriate lev-
el is, in this case, truth-values.
A more abstract mediation
would be based on "obs" or
abstract "terms" in the sense
of Combinatory Logic. But the
most profoundly based medi-
ation would require an intro-
duction of morphogrammtic
and keno-grammatic struc-
tures which are neutral to the

identity of disseminated truth-values or abstract objects.

if - patterns

if , if , if

if , if , if

if

1 1 1

1 1 3

()
()

11 3 1

1 3 3

, if , if

if , if , if

()
()

�

sketch

thematize

�

�

poly - paradigm�(id, red,�id)

iif - control if ,� if , if3
1 1 3

() ()
identify cont� eexture

define

lambda

1

�if - control

�expr�stmt()
iif

then

else

�

�

boole - expression

true - statement

�� false - statement

[]

elect

∅���� ������������∅∅

identify contexture

define

lamb

� 1

�if - control

dda

if

then

�expr�stmt

boole - expression

true

()
�

� -- statement

false - statementelse�

[]

elect

����� ������������ �

��� �������� �������

∅ ∅

∅ ∅

identiffy contexture

define

lambda

� 3

�if - control

�expr��stmt

boole - expression

true - statem

()
if

then

�

� eent

false - statementelse�

[]

elect

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 80

11.3.7 Transjunctional commands for Ruby(3)

ConTeXtures representation of (trans, and, and)

The transjunctional command structure (trans, and, and) has a more familiar repre-
sentation in its logical tableaux rules. Obviously they don’t exist neither in Ruby nor in
any other existing programming language. Simply because they are defined not inside
a contexture but between different contextures representing programming languages.

ConTeXtures: trans
Syntax:
 expr(m) `///' expr(m)

 expr(m) `trans' expr(m
Example: expr(3) trans.and.and expr(3)

and: as given, applied to contexture2 and contexture3.
trans: if left and right hand site true1, then true1for contexture1 and true1 for contexture3,
 if left and right hand site false, then false1 for contexture1 and true2 for contexture2,
 if left hand site true1 and right hand site false1 and
 left hand site false1 and right hand site true1,
 then false2 for contexture2 and false3 for contexture3.

Ruby Ruby Rubym m
refl act sops

m() () →:� �
,�

(()

() ()

 refl act

COMMAND COMMAND

,�

sup�:� �3 3
oob COMMAND

id i j s m

 →

∀ ∈ ()

()�

:� , :�����������

3

����� � �.
���� ����������

.Ruby Rubyi j
id

i() → jj

i jbif i j i j s m Ruby Ruby

()
() ∀ ∈ () (

�

,� :� , :���� ,�)) → ()()� � || ,����bif
i j jRuby Ruby Ruby

bif id id COMMAND COMMAND tr,� ,� �:� �()
() ()3 3

aans and and COMMAND

bif COM

,� ,� �()
() →

()

3

1 MMAND COMMAND COMMANDtrans
3 3() () →�:� � � 11 2 3

2
3

||� �||COMMAND COMMAND

id COMMAND()
() ��:� � �COMMAND COMMAND

id COMMAND

and
2 2

3
3

 →

() () →�:� � �COMMAND COMMANDand
3 3

samba bif id id

thematize

()(� , , �)

�(�

3

trans, aand,�and�)

�

(�

()identify contextures

lambda

3

 aa b

define

elect if a a a

() ()

.

)

� � �

3 3

1 3

trans1

(()
()

()
� �� �

� � ��

�

elect if b b b

elect if a b b
1

2

eelect if b a b

elect if b b a
2 3

2 3

.

.

�

� �

()
()

identify contexture

define

lam

� 2

 and2

bbda a b
if a b a

()

�()

identify cont� eexture

define

lambda a b
if a

3

and3

()
(bb a)

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 81

11.4 Transjunctional constellations and tableaux proofs
Transjunctions in logic and programming are not well known. Thus, I present a proof

of a formula from PolyLogics to show the functioning of a transjunctional constellation.
Step-wise concretization of the presentation. First, simple formulas can be written without
considering the OM-structures, using only the rules of the sub-system-indices of the formulas.
Second, especially for transjunctional formulas, the sub-system structure, O (=S), is involved
but omitting the M-structure. Third, for full interactional and reflectional formulas, the whole
OM-structure has to be used. The following diagrams shows the development of a simple
negational and transjunctional formula, using only the sub-system structure. All those nota-
tional forms are for manual use only and to guide necessary further implementations. A fur-
ther step follows by the application of meta-rules of the term calculus. Finally, a semi-
automated proof by the LOLA-implementation is presented (in the paper mentioned below).

11.4.1 Tableaux rules for the proof of the exemplary formula H1

Tableaux representation of polylogical (trans, and, and)

Distribution matrix for (trans, and, and)

Mapping rules for (trans, and, and)

H X Y X Y1

5 5 5
: � � � � � � �<>∧∧() →→ → ¬ ¬ ∨<>∨ ¬()

t X Y

t X

t Y

f X Y

f X

f Y

1

1

1

1

1

1

� � ��

�

�

����
� � �

�

�

<>∧∧ <>∧∧

tt X Y

t X

t Y

f X

f Y

f X
2

2

2

1

1

2
� � �

�
� �

�
�

�

�

����
� �<>∧∧ <>∧∧∧

<>

�

� �� ���
�

�
��

�

�

��

� �

Y

f X f Y
f X

t Y

t X

f Y

t X

2 2
1

1

1

1

3
∧∧∧ <>∧∧�

�
�

�
����

�

�

����
� � �Y

t X

t Y

t X

t Y

f X Y

f3

3

1

1

3

3
�� �� ���

�

�
��

�

�
X f Y

f X

t Y

t X

f Y3
1

1

1

1

PM O O O
M log log log
M log
M log

P1 2 3
1 1 1 1
2 2
3 3

∅ ∅
∅ ∅

����

MM O O O
M trans trans trans
M and
M and

1 2 3
1
2
3

∅ ∅
∅ ∅

<> ∧ ∧() →() () (): �*�� � � :� ,�(||),L L L L L L3 3 3
1 2 1 LL L

Log L L transjunct

3 1

1 1 1

||

: �*� �� �

()

 → <>

→

→� :�

�*� ,� *� � � ,�

�*� � �L

f t t f f f

t t1

1 1 1 1 2 3

1 1 tt t

f f f t

Log L L conj

1 3

1 1 1 2

2 2 2

,�

* � , �

: �*� ��

→

uunction

con

L L

Log L L
��� � �||�

: �*� ��

 → 2 1

3 3 3 jjunction L L��� � || →

 3 1

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 82

Tableaux representation of polylogical (or, trans, or)

Tableaux representation of (impl1, impl1, impl3)

Tableaux representation of polylogical negations

t X Y

t X t Y
f X

t Y

t X

f Y

1

1 1
2

2

2

2

� � ��

� ����
�

�
��

�

�

��
∨<>∨

���
� � �

�
�

�
����

�

�

� �

f X Y

f X

f Y

t X

t Y

t X

1

1

1

2

2

2

∨<>∨

∨<>∨∨ ∨<>∨

∨

�

�

�

����
� � �

�

�

��

� �

Y

t X

t Y

f X Y

f X

f Y

t X

2

2

2

2

2

3
<<>∨�

��� �����
�

�
��

�

�

����
Y

t X t Y
f X

t Y

t X

f Y

f

3 3
2

2

2

2

33

3

3

2

2

� � �

�

�
��

�

�
�

X Y

f X

f Y

f X

f Y

∨<>∨

t X Y

f X t Y f X t Y

f X
1

1 1 3 3

1
� � ��

� ���� � ��
����

� ��→→→ →→→→

→→→

�

�

�
��

�

�

� �� �

� � ��

Y

t X

f Y

t X

f Y

t X Y

f X t Y

1

1

2

2

3

3 3
����

����
� �� �

�
�

�

f X Y

t X

f Y

3

3

3

→→→

t X

f X

t X

t X
1 1

3

1
3

2 1
3

3
3

� �

�
�����

� �

�

()

()

()

()

¬() ¬()
�����

� �

�

� �

�

()

()

()

()

t X

t X

f X

t X

3 1
3

2
3

1 1
3

1
3

¬()

¬()
������

� �

�
����

� �()

()

()f X

f X

f X

f
2 1

3

3
3

3 1
3

2

¬() ¬()
��

� �

�
�����

� �

()

()

()

()

X

t X

t X

t X

f

3

1 2
3

3
3

2 2
3¬() ¬()

22
3

3 2
3

1
3

1 2
3

�
����

� �

�

� �

()

()

()

()

X

t X

t X

f X

f

¬()

¬()
33

3

2 2
3

2
3

3 2

�
�����

� �

�
����

� �
()

()

()

(

X

f X

t X

f X¬() ¬ 33

1
3

)

()�

()
f X

 ¬ = ¬ ¬ ¬()() = ¬ ¬ ¬
5

3
1 2 1

3
2 1 2

3� �: � � � : � � �()
�

()
�

(X X X))()()

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 83

11.4.2 Direct formula development

Tableau presentation (negation, disjunction, transjunction, implication)

A formula is provable in L(3) iff all its branches are closing under all signatures false.
In both systems, S1 and S3, the tableaux for the formula H1 are closing under the

signature of false3. For S1, a contradiction occurs between step 4/5 and 9. For S3,
a contradiction occurs for step 4/5 and 7. Thus, the formula is provable under the sig-
nature false3. The same situation happens for the formula under the signature of false1.
All the branches in S1 and in S2 are closing.

The signatures false1 and false3 are forced by the type of implication involved, i.e.
[impl1, impl1, impl3] which is of pattern [id, red, id].

Thus, the formula H1 is true under all evaluations.

Cf. http://www.thinkartlab.com/pkl/lola/PolyLogics.pdf

Nr S1

1

2

3

S2 S3

t3 X tr.et.et Y

f3 N5 (N5 X vel.tr.vel N5 Y)

t3 N5 X vel.tr.vel N5 Y

t3 X

t3 Y

Nr

(0)

(0)

(2)

(1)

(1)

(3)

(6)

t3 N5 X t3 N5 Y

f3 X f3 Y

t2 N5 X

f2 N5 Y

f2 N5 X

t2 N5 Y

(3)

t1 X

t1 Y (1)

(1)

S3

f1 X t1 X

t1 Y f1 Y

(6)

(7)

(S3)

(S2)

(S3)

x x

x x

4

5

6

7

8

9

10

(0) f3 H1 = f3 ((X tr.et.et Y) .iij. N5 (N5 X vel.tr.vel N5 Y))

(�,��,�� �)
(� ,�,�� �)
(�,�� ,� �)
(

∅ ∅
∅

∅

S
S S

S S

3
1 3

2 3
�� ,�,�� �)

(�,���,����)

S S

x x

1 3∅

∅

S3

S3S1|

S3S2

S2S1

|

�,�,� �

� ,�,� �

�,� ,�

∅ ∅()
↓

∅()
↓

∅

S M

S M S M

S M

3 3

1 3 3 3

2 3 SS M

S M S M

3 3

1 3 3 3

�

� ,�,� �

()
↓

∅()

Unification

����

(� �)

(� �)�

()α

α γ

β δ

3

3 1

3 1

(3)

trans

trans

neg

rules:

tr: transjunction
et: conjunction
vel: disjunction

i,j: implication
S3

http://www.thinkartlab.com/pkl/lola/PolyLogics.pdf

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 84

Tableaux presentation for f1H1

Sub-systems S1 and S2 are closing directly, S1 at step 8 and S2 at step 9. This would
be enough to close the tableaux for S1 and S2. But there is an additional part of the
formula which is closing separately in S1, closing at step 13, encircled in red. All
branches of the tree are closing for both signatures, thus the formula is a 3-tautology.

The different structural diagrams above should show clear enough how the formula
development is working. The step-wise development of the formula guarantees the con-
nectedness of the branches of the different trees, despite the jumps into other sub-sys-
tems, which are necessary to produce a semantic result on the base of the signatures.

Nr S1

1

2

3

S2

f1 N5 (N5 X vel.tr.vel N5 Y)

t2 N5 X vel.tr.vel N5 Y (2)

Nr

(0)

(0)

(2)

(3)

(3)

(4)

(5)

S2

4

5

6

7

8

9

10

(0) f1 H1 = f1 ((X tr.et.et Y) .iij. N5 (N5 X vel.tr.vel N5 Y))

t1 X tr.et.et Y t2 X tr.et.et Y

f2 N5 (N5 X vel.tr.vel N5 Y)

t1 X (1)

t1 Y (1) t2 N5 X (3)

t2 N5 Y (3)
f1 X (4)

f1 Y (5)

x

t2 X (1)

t2 Y (1)

f1 X (1)

f1 Y (1)

t1 N5 X | t1 N5 Y (8)

11

12

13

 (10)

 f2 X | f2 Y (9)

f2 N5 X t2 N5 X
t2 N5 Y f2 N5 Y

(8)
(8) t1 X f1 X

 f1 Y t1 Y

 x x

t1 N5 X vel.tr.vel N5 Y

 --- ---
 x x

x

x

x

M1 M2 M3 M1 M2 M3 M1 M2 M3

O1 O2

G110 G120 G000

#

O3

#

xx
xx

x

x

#

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05

DRAFT

From Ruby to Rudy 85

11.4.3 Reduction of complexity by unification and meta-rules

The concrete complexity of the tableaux tree of formula H1 can be reduced with the
help of the unification method of Smullyan and, as a step further, with the application
of some meta-rules over tableaux trees, that is, the term rules of polylogic. The diagram
structure is represented by the indices of the sub-systems only.

Unification tableaux tree development of f1H1

The example of unification preserves the tree structure induced by the formula. The
next example, which applies additionally the term rule R1, is reducing and separating
junctional and transjunctional parts, and therefore, offering a better economy of the
sub-system parts which in the latter example are still distributed over the whole tree.

Unification of f1H1 with meta-rules

unv f H(�)�:

����������������������������

1
1

3()

�������� �
������������������������������

α3()
���� ����

����������������������������� �α3
1

������������� �

�������������������������

α

α

3
2

33 1 3 2��� ������ �������� �������

�������

δ β γ() ()
������������������� ��� ������ ������

�
α δ3

1 1
1

�����

������������������������� ��� ����α δ3
2 2

1 ββ β
γ

1
3

2
3

1

��� ���

��������������������������

()

�������������
��

���
�

��
γ

γ

γ

γ
1
1

2
1

3
1

4
1

Term rule R realized as

simul et

� � � � :

���� � � �

1

α δ() �� � �

���� �� �� �� �� � �

β γ

α β δ γ

simul

et simul et

()
() ())����

nv f H(�)�:
�����������������������������

1
1

3()

������� �
�������������������������������

α3()
��� ����

����������������������������� ��α3
1

�������� �

���������������������������
�

α

α

β

3
2

3

33

1

1

��������
�� ��

��

δ

γ

�������

����������������������������
α

α

3
1

33
2

1
1

2
1

������������ ��������

��������������

δ

δ

�������� ��� �������
�
� �β β

γ

γ

γ

γ1
3

2

3 1
1

2
1

3
1

4
1

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05

DRAFT

From Ruby to Rudy 86

The tableau tree for f3H1 is even more confusing in its full concrete manual develop-
ment, which first has to be studied before it can be reduced with the application of
meta-rules to the following unification.

Unification tableaux tree development of f3H1

Again, the meta-rules are applied, producing a simple house holding of the branches
and their sub-systems.

Unification of f3H1 with meta-rules

System changes, represented as a
change in the index of the formula,
say from gamma2 to gamma1, are
produced by logical negators.
Their rules are given with the tab-
leaux rules for negations of signed
formulas. Signed formulas are very
convenient for complex logics but
the polylogical rules are not de-
pending on the method of signed
formulas. Each method which is

keeping the sub-system indices right is doing the job.

Comment:

dec: decomposition of the complexion into alpha1 and alpha2 parts,
tabl: tableaux rules, producing intra-contextural sub-formulas,
R1: term rule R1, collecting junctional and transjunctional
 parts separately.

An implementation for a programmed formula development for the unifyied ap-
proach would have to consider both, unification and meta-rules (cf. LOLA).

unv f H(�)�:

����������������������������

3
1

3()

������� � �
����������������������������

α α1 2()
������ �������

������������������������������ �������������
��������������������

α α1 2() ()
��������� ������������� ��

�������������������������� ����� ������� �����������α α α
1
1

2
1

1
2 ���� ��

������������������������ ����

α

α α

2
2

1 2() (() () ()���� �� ���������

���������������

α δ β2 1 1

���������� ����� ����� � ����� ��α α α δ β
1
1 1

1
2

1
1 2() �������

������������������������ �����

γ

α

2

2
1

()
αα α δ

β β
γ1

1
2
2

2
1

1
2

2
2

1������ � �
� �

� �������

���

()

������������������������������� ���������

α
2
1

����������������������

�
� �

γ

γ

γ

γ
1
1

2
1

3
1

4
1

��� ��������������������� ������

� ��

α α

α

1 2()

dec 11 2

1 2 1

() ()

() ()
�������������

�� �� �||�

α

α α δtabl ���� �||�� �

��� �|���������

β γ

α
α

β

2 1

1
2

2
1

()

()

R

�� ��
δ

γ

1

1

Rudy; some Dissemination of Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05

DRAFT

From Ruby to Rudy 87

11.4.4 Function structure of Ruby

(3)

Similar, functions are understood as distributed and involved in polycontextural func-
tionality.

Classes in Ruby are first-class objects-each is an instance of class
Class.

 When a new class is created (typically using class Name ... end), an
object of type Class is created and assigned to a global constant (Name in
this case). When Name.new is called to create a new object, the new method
in Class is run by default. This can be demonstrated by overriding new in
Class:

class Class
 alias oldNew new
 def new(*args)
 print "Creating a new ", self.name, "\n"
 oldNew(*args)
 end
 end

http://www.rubycentral.com/ref/ref_c_class.html#inherited

The class-definition scheme is:

"class Name ... end"

What could be a class definition for complex, that is, ambiguous classes? They are
surely excluded from the usual game. Simply because they are not members of a single
hierarchic order of classes and sub classes.

Thus, a first step should be its distribution:

"class Name...end"

over different places.
A next step would be to define operations between
classes of different contextures. This may be the job of
operations based on polylogical operators, especially
transjunctions as the interactional operators of poly-
logics. Operations based on the

electors

 would define
the orthogonal developments of classes and produce

heterarchic inheritance patterns additional to the intra-contextural hierarchic orders.
 Again, we have to chose the contextures within we
want to define a

new class

. This class will have a

name

and will be defined by its

constructors

 and

methods

.
The introduction will be closed by

end

.

Elect

 will de-
cide in which contexture, the same or another, the next
steps will happen. But this is a local introduction only
not yet involved in the global interacting and reflecting
game of complex class definition. Thus, this class
scheme has to be disseminated and again, the super-
operators

sops

 will involve it into the game of interac-
tionality/reflectionality of polycontextural program-
ming. Class will still be involved locally in hierarchies

but contextures are heterarchically organized. On the base of distributed classes over
different hierarchies multiple inheritance, i.e.,

poly-inheritance

 is accessible without ar-
tificial restrictions. Which are necessary in the classic case to avoid contradictions.

class 3() =

class�Name�...�end

class�Name�...�ennd

class�Name�...�end

General�scheme�for�class

identify contexture ii

define

lambda

define

 class

name

constr

i

�(� �)

� uuctors

methods

()

()

� �define

end

elect contexturej�

http://www.rubycentral.com/ref/ref_c_class.html#inherited

Chiasms: Contradiction vs. Mediation in Polysemy

 Rudolf Kaehr Februar 2, 2007 8/19/05

DRAFT

From Ruby to Rudy 88

12 Chiasms: Contradiction vs. Mediation in Polysemy

“Multiple inheritance is good, but there is no good way to do it.” A. Snyder 1987

12.1 Chiasm in conceptual modeling

Figure 14 shows a "bowtie" inconsistency
that sometimes arises in the process of align-
ing two ontologies. On the left of Figure 14,
Circle is represented as a subtype of Ellipse,
since a circle can be considered a special
case of an ellipse in which both axes are
equal. On the right is a representation that
is sometimes used in object-oriented pro-
gramming languages: Ellipse is considered

a subclass of Circle, since it has more complex methods. If both ontologies were merged, the
resulting hierarchy would have an inconsistency. To resolve such inconsistencies, some definitions
must be changed, or some of the types must be relabeled. In most graphics systems, the mathe-
matical definition of Circle as a subtype of Ellipse is preferred because it supports more general
transformations.
http://users.bestweb.net/~sowa/ontology/ontoshar.htm#Formal

For whom are these two positions a contradiction? Where does the inconsistency ap-
pear? Where is it placed? Obviously, both positions are clean in themselves and have
their reasonable advantages. Thus, the inconsistency occurs only in the mix (interac-
tion) of both and by a mapping of it into a third general common position, say logic.
What happens? The merging produces a new object which involves both different po-
sitions producing the contradiction and at the same time denies the autonomy of both.

From an interactional point of view, in contrast to an entity ontology standpoint, it is
more appropriate to consider the process of merging as a process of

conflict resolution

.
This type of modelling is reasonable only if we accept the relevance of the two different
view-points and if both positions have their own reason to exist at once.

The above example of a

“bowtie inconsistency”

 can easily modeled as a chiastic
interaction between two different positions offering at least a conceptual description of
the situation as introduced. Position

i

 might be programming(PRG), Position

j

 (OOP).

Class and subClass Scheme

Chiasm (Ellipse, Circle, PRG, OOP):

OrdRel(Ellipse1, Circle1),
ExchRel(Ellipse1, Circle2)
OrdRel(Circle2, Ellipse2)
ExchRel(Circle1, Ellipse2)
CoincRel(Ellipse1, Ellipse2)
CoincRel(Circle1, Circle2)

Pos3: The interlocking mechanism between both
contextures is modeled in contexture

l

.

In other words, the chiasm can generally be de-
fined as between Class and subClass and its
distribution over, at least, two positions. Thus:

chiasm (Class, subClass, Pos1, Pos2).

identify contexture

define

lambda

i

 class

n

i

�(�aame

constructors

methods

�)

�

�

define

define

()
()

()
end

define

lambda

�

�(�

subClass

nname

constructors

method

�)

�

�

inherit

inherit

()

ss()

end

elect� �contexture
j

http://users.bestweb.net/~sowa/ontology/ontoshar.htm#Formal

Chiasms: Contradiction vs. Mediation in Polysemy

 Rudolf Kaehr Februar 2, 2007 8/19/05

DRAFT From Ruby to Rudy 89

12.2 From Ruby’s class definition to ConTeXtures compound notations
In prolongations of Ruby’s class definition a nice modeling of compound class defi-

nitions for reflectional and interactional ConTeXtures constellations can be introduced
along the "anthropomorphic" terminology of MyClass, YourClass and OurClass. This
is a kind of a concretization of the general scheme for Class, omitting the SubClass
distinction and its chiasms, as introduced before. There are no limits to extend this sce-
nario to situations of higher complexity and complication.

Interpretation

MyClass can be interpreted as the Class placed in the contexture in which the state-
ment "Circle is represented as a subtype of Ellipse" holds and YourClass can be inter-
preted as the Class placed in the contexture in which the complementary statement
"Ellipse is considered a subclass of Circle" holds. Obviously, OurClass then can be
understood as the Class OurClass placed in the contexture in which the common or
mediated statements about Ellipses and Circles, independently of My- and Your-posi-
tion, holds. Obviously, the My/Your/Our-terminology is My-centred. This modeling is
restricted to the "diagonal" components of the full 3-contextural matrix.

A full reflectional and in-
teractional scenario
would have to consider
the mutual thematiza-
tions of the My-, Your-,
and OurClass positions.
Say, from My-position,
Your-position is reflect-
ing Our-position in this
or that way. Thus, the
above, isolated, class
definitions of MyClass,
YourC lass and
OurClass, have to be
distributed over the full
polycontextural matrix
for 3 contextures.
This polycontextural ma-
trix is presenting only
the abstract scheme of
3-contextural, reflection-

al and interactional, class distribution. The following matrix is more detailed, but re-
stricted, again, to the "diagonal" components of the whole matrix.

Short Rudy notation

compound

class MyCla

� � :

�

3

1

()

sss

def

end

c

������...

llass YourClass

def

end

2 �

������...

class OurClass

def

end

3 �

������...

Ruby class definition

class MyClass

de

� � :

�

������

ff

end

...

Complex ConTeXture notation

contextures

� � :
,3 3())

class MyClass

def

end

1 1. �

������...

class YourClass

def
2 1. �

������....

�.

end

class OurC

3 1 llass

def

end

������...

class MyClass

def

end

1 2. �

������...

class YourClass

def
2 2. �

������....

�.

end

class OurC

3 2 llass

def

end

������...

class MyClass

def

end

1 3. �

������...

class YourClass

def
2 3. �

������....

�.

end

class OurC

3 3 llass

def

end

������...

Chiasms: Contradiction vs. Mediation in Polysemy

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 90

Explicit chiasm of Ellipse and Circle with Class and subClass

General Scheme for chiasm (Class, subClass, Pos1, Pos2).

As we learnt from Minsky’s Panalogy Principle: "If you 'understand' something in
only one way then you scarcely understand it at all—because when something goes
wrong, you'll have no place to go"– we should be able to run in parallel both side of
the complementary problem solving strategies. If we encounter an obstacle in one ap-
proach, we can switch to the other approach to go on. But this is only the weak under-
standing of the situation compared to the possibility of a simultaneous approach.

More:The circle-ellipse dilemma. Is Circle a subclass of Ellipse, or vice-versa, or nei-
ther? http://www.cs.man.ac.uk/arch/people/j-sargeant/inheritnotes/node21.html

thematize�chiasm� PRG,�OOP,�Circle,�Ellipse())()
identify

chose

define

contexture

PRG

cla

i

�

sss

Ellipse

constructors

i

lambda

define

�(� �)

�()

ddefine�methods()

()
end

define

lambda

�

�(�

subClass

Circlle

constructors

methods

�)

�

�

define

define

()
()

end

electt� �Circle
j

identify

chose

define

contexture

OOP

clas

j

�

ss

Circle

constructors

i

lambda

define

de

�(� �)

�()

ffine�methods()

()
end

define

lambda

�

�(�

subClass

Ellipsee

constructors

methods

�)

�

�

inherit

inherit

()
()

end

elecct� �Ellipse
i

identify

chose

defin

 contexture

PRGxOOP
l

�

ee

lambda

define

 class

EllipxCirc

constr

l

�(� �)

� uuctors

methods

()
()

define�

()
end

define

lambd

�subClass

aa

inherit

inhe

�(� �)

�

CircxEllip

constructors()

rrit�methods()

end

elect�Circle
i,j

thematize j�chiasm Class,�subClass,�Pos ,�Posi(()
()identify

define

la

contexture Pos

class

i

i

mmbda

define

define

�(� �)

�

�

name

constructors

m

()

eethods

subClass

()

()

end

define

lambda

�

�(�� �)

�

�

name

constructors

metho

inherit

inherit

()

dds()

end

elect� �contexture j

identiify

define

lambda

contexture Pos

class

j

j

()

�(�nname

constructors

methods

�)

�

�

define

define

()

())

()

end

define

lambda

�

�(� �)

subClass

name

iinherit

inherit

�

�

constructors

methods

()

()

end

elect� �contexturei

identify conttexture Pos

class

name

i

i

()

define

lambda

d

�(� �)

eefine

define

�

�

constructors

methods

()

()

eend

define

lambda

inherit

�

�(� �)

subClass

name

()

��

�

constructors

methods

()

()

inherit

end

elect� �contexturei, j

http://www.cs.man.ac.uk/arch/people/j-sargeant/inheritnotes/node21.html

Limits of the Idea of Objects

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 91

13 Limits of the Idea of Objects
There are objects which are not properly identifiable. At least not in a single ap-

proach. They are nevertheless not fuzzy or undetermined but over-determined. Such
objects need a double approach, a double thematization and a double identification.
They are not really objects but "undecidables", in more profane words, as pictures,
they are also called flip-flop figures (Kippbilder) or paradoxical constructions. But they
are nearly everywhere, mainly as sentences. "Thoughts themselves are ambiguous!"
Marvin Minsky. Without a strict procedure to disambiguate sentences with the help of
a chain of contexts; which are nevertheless themselves introduced by sentences; which
are ambiguous, too. There is nearly nothing which is not involved in a game of chan-
nging meanings.

Gotthard Gunther writes:
All of Man's higher forms of communication are in their inner structure equivocal to the point
of being generally ambiguous. No thought - as thought - can be absolutely and unequivo-
cally understood. Heidegger also writes about this [3]:

"This ability to be interpreted many different ways is no protest against the rigor of
those thoughts. For all true thought of an essential nature remains, and indeed, for
reasons of its existence, generally ambiguous. This ambiguity is not just the remainder
of a not yet achieved formal logical clarity to be properly striven for but not attained.
Rather, ambiguity is the element in which thought must move in order to become rig-
orous."

http://www.vordenker.de/ggphilosophy/gg_identity-neg-language_biling.pdf

If we understand "class" or "object" as a cognitive category, i.e. as a Reflexions-
bestimmung", and not as an ontological category, then "class" and "object" are em-
bedded in a reflectional grid reflecting on the categories and their environments.

The question leads back to the main question: Does the class, object, instance, pro-
totype, clone model represent properly the modeled objects in question?

A pleasant new candidate for equivocal and ambiguous interactions might well be
the couple object/aspect.

To deconstruct programming paradigms we have to discover their primary dichoto-
mous structure, their system of couples of concepts, like class/instance, private/public,
reserved/derived, object/aspect, and to diamondize, step by step, the system/net-
work of those dichotomies towards a game of chiasms between the disseminated di-
chotomies. Networks of disseminated dichotomies are building a heterarchic scenario.

13.1 Why linearizations? Some citations
To avoid contradictions by involving the diamonds of polysemy the strategy of linear-

ization was introduced.
Kim Barrett et al, A Monotonic Superclass Linearization for Dylan
In a class-based object-oriented language, objects are instances of classes. The properties
of an object - what slots or instance variables it has, which methods are applicable to it -
are determined by its class. A new class is defined as the subclass of some pre-existing class-
es (its superclasses - in a single-inheritance language, only one direct superclass is allowed),
and it inherits the properties of the superclasses, unless those properties are overridden in
the new class. Typically, circular superclass relationships are prohibited, so a hierarchy (or
heterarchy, in the case of multiple inheritance) of classes may be modeled as a directed
acyclic graph with ordered edges. Nodes correspond to classes, and edges point to super-
classes. Languages that use this model include Ada 95, C++, CLOS, Dylan, Eiffel, Java,
Oberon-2, Sather, and Smalltalk.

http://www.vordenker.de/ggphilosophy/gg_identity-neg-language_biling.pdf

Limits of the Idea of Objects

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 92

In object-oriented systems with multiple inheritance, some mechanism must be used for re-
solving conflicts when inheriting different definitions of the same property from multiple su-
perclasses.
Some languages require manual resolution by the programmer, with mechanisms such as
explicit delegation in C++ [ES 90] and feature renaming in Eiffel. [Meyer 88]

When a class is created, a linearization of its superclasses, including itself, (also known as
the class precedence list or CPL) is determined, ordered from most specific to least
specific. When several methods are applicable for a given call, the one defined on the
most specific class, according to the linearization, is selected.

Most object-oriented languages implicitly use a rule similar to linearization for method dis-
patching in single inheritance: a class is more specific than any of its superclasses, so meth-
ods defined for subclasses override methods defined for superclasses. The problem with
generalizing this to multiple inheritance is that the simple rule does not make clear which of
two superclasses with no subclass/superclass relationship between them is more specific.
http://www.webcom.com/haahr/dylan/linearization-oopsla96.html

famous diamond problem
How does Java solve the famous diamond problem (caused by multiple inheritance)? That
is, you can implement multiple interfaces, that in turn can be implemented by one class. I
know that Java has done it; my question is how?
The quick answer: Java solves the diamond problem inherit in multiple inheritance by not
allowing multiple inheritance in the first place. However, as you point out, interfaces do al-
low a certain kind of multiple inheritance.
So what's the solution? If you have access to the source code the best course of action is to
rename the methods in either of the above cases. If you don't have access, you are stuck.
http://www.javaworld.com/javaworld/javaqa/2001-03/02-qa-0323-diamond.html

Ruby: Inheritance and Mixins
 Some object-oriented languages (notably C++) support multiple inheritance, where a class
can have more than one immediate parent, inheriting functionality from each. Although
powerful, this technique can be dangerous, as the inheritance hierarchy can become am-
biguous.

 Other languages, such as Java, support single inheritance. Here, a class can have only one
immediate parent. Although cleaner (and easier to implement), single inheritance also has
drawbacks---in the real world things often inherit attributes from multiple sources (a ball is
both a bouncing thing and a spherical thing, for example).

 Ruby offers an interesting and powerful compromise, giving you the simplicity of single in-
heritance and the power of multiple inheritance.
A Ruby class can have only one direct parent, and so Ruby is a single-inheritance language.
However, Ruby classes can include the functionality of any number of mixins (a mixin is
like a partial class definition). This provides a controlled multiple-inheritance-like capability
with none of the drawbacks.
http://www.rubycentral.com/book/tut_classes.html

Heterarchy vs. hierarchy in Smalltalk
At the top of the heterarchy are root interfaces, which are parentless interfaces; they ex-
tend no other interfaces. At the bottom of the heterarchy are the leaf interfaces which are
childless interfaces; no other interfaces extend them.
http://www.iam.unibe.ch/~scg/Archive/Papers/Sade02aDynamicInterfaces.pdf
http://www.jot.fm/issues/issue_2002_05/article1

http://www.webcom.com/haahr/dylan/linearization-oopsla96.html
http://www.javaworld.com/javaworld/javaqa/2001-03/02-qa-0323-diamond.html
http://www.rubycentral.com/book/tut_classes.html
http://www.iam.unibe.ch/~scg/Archive/Papers/Sade02aDynamicInterfaces.pdf
http://www.jot.fm/issues/issue_2002_05/article1

Limits of the Idea of Objects

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 93

13.2 Paradox by design and paradox by construction
Sowa’s example of Circle/Ellipse was something like paradox based on the model-

ing of facts. It is a fact that there exists, at least, two different approaches to understand
the relation between the concepts circle and ellipse. And both understandings of the
conceptualization are excluding each other on logical grounds.

On the other hand, the example "confused-grid", can be understood as a construct-
ed constellation. The design of the confused grid may have been constructed for didac-
tical reasons but it might be in conflict with the underlying logic of class constructions.
That is, the construction is over-determined in relation to the logic of class involved. It
turns out that the complexity of the constructed object "confused grid" is higher than
the complexity of the logic and ontology of the used programming language. The ex-
ample may therefore be artificial, but it is nevertheless of interest. It demonstrates very
clear the problematics of polysemy and multiple inheritance in OOP. Additionally it
shows the conflict between possible constructions by design and violation of the logical
base of the system in which the construction happens. But disallowance of such con-
flictive constructions wouldn’t help much because there are enough real world applica-
tions where they appear by necessity.
13.2.1 The confused-grid example

define class <grid-layout> (<object>) end;
define class <horizontal-grid> (<grid-layout>) end;
define class <vertical-grid> (<grid-layout>) end;
define class <hv-grid>
 (<horizontal-grid>, <vertical-grid>) end;
define method starting-edge
 (grid :: <horizontal-grid>)
 #"left"
 end method starting-edge;
 define method starting-edge
 (grid :: <vertical-grid>)
 #"top"
end method starting-edge;

Example 1a: A simple use of multiple inheritance
 define class <vh-grid>
 (<vertical-grid>, <horizontal-grid>) end;

Example 1b: Reversing classes in the linearization
 define class <confused-grid> (<hv-grid>, <vh-grid>) end;
Example 1c: An inconsistent class definition
For example, consider the simple use of multiple inheritance in example 1a.
 The question multiple inheritance raises is ``What is the starting-edge for an <hv-grid>?'' If
it is more like a horizontal than a vertical grid, it is the left edge, but if it is more like a vertical
grid, it is the top edge.
In an explicit resolution system, the author of the <hv-grid> class would have to write a dec-
laration or method to choose which superclass to obtain the starting-edge behavior from.
In contrast, when a linearization is used, the default behavior is determined by which of
<horizontal-grid> or <vertical-grid> appears first in the linearization.

Limits of the Idea of Objects

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 94

13.2.2 Linearization of the confused-grid
Following CLOS, Dylan uses the local precedence order - the order of the direct superclasses
given in the class definition - in computing the linearization, with earlier superclasses con-
sidered more specific than later ones. Therefore, since <horizontal-grid> precedes <vertical-
grid> in the definition of <hv-grid> it will also precede it in the linearization. The full linear-
ization for <hv-grid> is
 <hv-grid>, <horizontal-grid>, <vertical-grid>, <grid-layout>, <object>
On the other hand, to create a combined horizontal and vertical grid which is more like a
vertical grid than a horizontal one, the only change necessary to the definitions above
would be to reverse the order of the direct superclasses in the class that combines the two
grids; see example 1b.
It is possible that an inheritance graph is inconsistent under a given linearization mecha-
nism. This means that the linearization is over-constrained and thus does not exist for the
given inheritance structure.
An example of an inconsistent inheritance relationship appears in example 1c. <confused-
grid> is inconsistent because it attempts to create a linearization that has <horizontal-
grid> before <vertical-grid>, because it subclasses <hv-grid>, and <vertical-grid> before
<horizontal-grid>, because it subclasses <vh-grid>. Clearly, both of these constraints cannot
be obeyed in the same class.
Kim Barrett et al, A Monotonic Superclass Linearization for Dylan
http://www.webcom.com/haahr/dylan/linearization-oopsla96.html

13.3 Modeling the main conflict
Obviously, the main conflict is between the aim of the construction, that is to construct

a "confused-grid" and the underlying logic of the class paradigm. In fact, there is no
reason to design the top/left or the top/right decision.

There is no reason from the point of view of the design to accept the simultaneity of
the <hv-grid> and the <vh-grid>. But this is not only contradicting linearization but the
logic of classes. There is no logical operator for class simultaneity in OOP and its log-
ics. Such a modeling is given by the next programming diagram.

Because the process of construction was realizing some dynamics of changing view-
point the dynamics itself has to be modeled in a full mapping of the concept construc-
tion. Scheme of a simultaneous mapping

With that, I am mod-
eling the confused
grid as a paradox
figure, a Kippbild/
Vexierbild, changing
from right to left and
from left to right and
knowing that it is an

interlocking mechanism and not a succession of two separated entities. A full descrip-
tion, modeling and logification of this dynamics of change would involve at least 6 dif-
ferent contextures to be realized adequately.

<confused-grid>� �
<hv-grid>

<vh-grid>
⇒

�⇒⇒

<horizontal-grid>

<vertical-grid>

<verrtical-grid>

<horizontal-grid>

⇒ ⇒<grid-layout> <object>

S : <horizontal-grid> <grid-layout> <object1 ⇒ ⇒ >>

S : <vertical-grid> <grid-layout> <object2 ⇒ ⇒ >>

S : <hv-grid>�
<horizontal-grid>

<vertical
3 ⇒

--grid>
<grid-layout> <object>

S : <vh3

⇒ ⇒

--grid>�
<vertical-grid>

<horizontal-grid>
⇒

⇒ ⇒<grid-layout> <object>

http://www.webcom.com/haahr/dylan/linearization-oopsla96.html

Limits of the Idea of Objects

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 95

13.3.1 Modeling the confused-grid as a simultaneity

13.3.2 Scheme of the confused-grid in its dynamics

Dynamics of the paradox

1. Thematize: <horizontal-grid>
2. Thematize: <vertical-grid>
3. Observe switch of 1. and 2. : <hv-grid>
4. Thematize the inversion of switch 3. :
 4.1: <vertical-grid> 4.2: <horizontal-grid>
5. Observe switch of 4.1 and 4.2: <vh-grid>
6. Observe switch of switches 3. and 5.:
 <hv-grid> .simul. <vh-grid> = <confused-grid>

The dynamics of the scheme are not involved in any information processing in time/
space and feed-back loops. But only in the structural pattern of the dynamics as
change. That is, change as a switch from one contexture or viewpoint the another and
back. But a switch is neutral to its beginning, thus, for an observer, it has to be in-
scribed in its neutrality. That’s the reason for the repetition of the inverse order of the
start configuration at 4. This change needs a localization in the game to be realized.

sketch

architecture

c

�

�

poly - paradigm

tabular - 3

hhoose

thematize

ident

�OOP

de - confused�grid�()

ffy contexture

define class

lamb

�

� �
1

grid - layout

dda

define

lambda

�object

horizontal - grid

gri
1�

� dd - layout()()
define method starting-edge

g
1 1

rrid :: <horizontal-grid>

#"left"

end

mmethod starting-edge1 1

end

[elect3]]

idenntfy contexture

define class

la

�

� �
2

grid - layout

mmbda

define

lambda

�object

 vertical - grid

gr
2�

� iid - layout()()
define method starting-edge

(
2

ggrid :: <vertical-grid>)

 #"right"

 end meethod starting-edge2 2

end

[]

elect3

identfy�ccontexture

define

lambda

3

�

�

grid - layout

confuseed - grid

vh - griddefine

horizontal grid

si

�

�

.�

− 1

mmul

vertical grid

end

.

−

2

−

define

vertical grid

simul

ho

�hv - grid

2

. .

rrizontal grid

end

−

1

��������������������

� �define method3 startinng-edge

(grid :: <confused-grid>)

 #"rig

3

hht"�.simul.�#"left"

 end method starting-e
2

ddge3

elect1 2,

<horizontal-grid>�<vertical-grid>[]
��������������������������������<vertical-grid> <horrizontal-grid>

<hv-grid> �

[]
[]�������� ���������������� ���

system3

<vh-grid>[] ������������

���������������
system5

��������������� �����<confused-grid>
system6

Limits of the Idea of Objects

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 96

13.3.3 A more explicit visualization of the paradox; on demand

How to read the diagram depends very much on the kind of modeling involved.
To solve a problem, we have to multiply it. (Lenin) Each colored graph has its own

paradox by construction. Each paradox can be resolved by bridging to another col-
ored graph by analogy (sameness), ruled by the as-abstraction, avoiding collision.

For example <hv-grid> as green to <hv-grid> as red or/and as blue, simultaneously.
Thus, avoiding paradox. Because the super class object is in itself a complexion of me-
diated different approaches ruled by a polycontextural class logic. On the other hand,
because now, paradoxes are ’domesticated’, all sorts of new paradoxes are accepted.
Hence, of the many possibilities, the following path isn’t producing any contradiction:

<con-grid>red –> <hv-grid>red||<vh-grid>green –> <h-grid>red||<v-grid>green –>
<grid-layout>red||<grid-layout>green –> <object>red||<object>green ==> no contradic-
tion; but separation/mediation of two analogous/simultaneous ways of thematizing <con-
grid>. ("–>": class inclusion, "||": discontextural parallelism).

<object>

<object

<object>

<object>

<grid-layout>

<grid-layout>

<grid-layout>

<grid-layout>

<h-grid> <v-grid>

<h-grid>

<h-grid>

<h-grid><v-grid> <v-grid>

<v-grid>

<hv-grid> <vh-grid>

<con-grid>

<hv-grid> <vh-grid>

<con-grid>

<hv-grid>

<hv-grid>

<vh-grid>

<vh-grid>

<con-grid>

<con-grid>

Limits of the Idea of Objects

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 97

13.4 Dialectics of linearization, evolution and mediation

If there is no negotiation about linearization possible and the fact of the arising an-
tagonism has to be accepted by the system and nevertheless the antagonism is not ac-
cepted as a working scenario by the designer or the main program then a resolution
is opened up by a structural expansion, enlargement, augmentation of the complexity
of the framework in which the conflict happens. This is a kind of a second order nego-
tiation where the fundaments of the conflict are resolved by enlargement of the system.
And it has strictly to be contrasted from the action of negotiation for renaming of terms
and relations inside a framework.

Paradoxical constellations with multiple inheritance, polysemy and diamond proper-
ties are defining a problem. To solve the problem it is not wrong to consider its con-
struction. What we can observe is the involvement of different approaches, points of
view and contexts mapped into a single non-ambiguous conceptual framework. Thus,
the dynamics which are used to construct the paradox are frozen in contradiction. Ob-
viously, mono-contextural approaches don’t have space to map the logical dynamics
of the construction. Thus, a first resolution of the problem lies in the acceptance of the
mechanism of its construction. Then, a polycontextural modeling and programming is
offering space for a dynamic realization of the over-determined construction without
restoring its paradox result. But, he who likes paradoxes is encouraged to build on the
base of the newly introduced complexity of the system again some more complex ones.

Harmonizing complexity

But this is not the end of the story. It is always possible to construct an object which
is too complex to fit into the language it belongs–or not. Thus, there is no final re-solu-
tion. A construction always can be too complex and the language not prepared to deal
with it. On the other hand, a programming language can be much too over-deter-
mined, and being much too complex for the object domain it is modeling and produc-
ing unnecessary redundant patterns.

With that, polycontextural programming languages are confronted with a new chal-
lenge of optimization: to harmonize the complexity of the language and the complexity
of the domain of computation. Programming as conceptual modeling and program-
ming as computation are in a competitive interplay.

Conflictive situations can be analyzed and adjusted manually or by meta-programs.
Some background

Polycontextural activities as interactionality and reflectionality as I am trying to realize are
in the tradition of the work of the cybernetician and philosopher Gotthard Gunther, inspired
by the dialogical and conversational approaches and cybernetic realizations of Gordon
Pask. Lively conversions with Heinz von Foerster and conversations with Humberto Matura-
na. Impressed by the scientific rigor of Lars Löfgren and Francisco Varela. The work of Gor-
don Pask has a cool representation and is kept well alive by the cybernetician and artist
Paul Pangaro. To mention only a few but distinct roots of the highly complex rhizomes.
http://cyberneticians.com/ http://www.pangaro.com/
http://www.thinkartlab.com/pkl/archive/Cyberphilosophy.pdf

Circular�Design :�

� �[[object] paradox]m m() ()⇒

[paradox] n

�� ������������������������
(() ()⇒

[object] n

http://cyberneticians.com/
http://www.pangaro.com/
http://www.thinkartlab.com/pkl/archive/Cyberphilosophy.pdf

Chiasm of Deliberating Self-modification for Ruby(3)

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 98

14 Chiasm of Deliberating Self-modification for Ruby(3)

Why should we use polycontextural paradigms?
Programmers are well used to give away some words from their language. It seems

not to be considered as a serious restriction or even loss of expressivity of their pro-
gramming abilities. All existing programming languages are based on some "reserved
words". For Ruby the reserved words are listed below.
Reserved words in Ruby
 BEGIN class ensure nil self when
 END def false not super while
 alias defined for or then yield
 and do if redo true
 begin else in rescue undef
 break elsif module retry unless
 case end next return until
Now, people are talking and programming a lot of and about self-modifying sys-

tems. Especially in AI and AL there is an obsession for self-referential constructions. Ev-
erybody who ever has programmed a self-replicative program has an idea about it.

This situation, Ruby/Identifiers, can be generalized and studied in a more formal set-
ting as done by Melvin Fitting. Questions of a "minimal set" of reserved terms are not
in place. Here I simply want to emphasize the rules of the game.

Melvin Fitting’s work space

Following the exposition of EFS (Elementary Formal Systems) by Melvin Fitting (in the
tradition of Raymond Smullyan) a simple connection to the paradigm of ConTeXtures
can be established by introducing EFS for each agent of a societal compound or com-
munity. Dissemination of EFS is realized along the strategies of polycontexturality as a
complementary system of reflectionality and interactivity of distributed and mediated
contextures giving place and place-ing Elementary Formal Systems (EFSi). Each agent
has his own work-space W and his reserved Identifiers ID based on its own syntax.

The interest of this little sketch is not to develop a full theory of disseminated EFS but
to give the smallest account to make clear the possibility of chiastic self-referentiality on
the base of very elementary definitions of EFS, reduced to nearly nothing but enough
for dissemination, reflectionality and interactivity.

Fixed-points vs. chiasms

Obviously, the chiasm between work-space and identifier is based on the as-abstrac-
tion. Identifier as work-space, work-space as identifier, and again, identifier as identi-
fier and work-space as work-space. Without this chiastic dynamics, restricted to the
identity principle, self-referentiality is damned to useless speculations about circularity.

In contrast to circularity concepts based on recursion and fixed-points or re-entry the
chiastic concepts are finite in their definition. Fixed-point modeling of self-referentiality
are often connected with transfinite recursion. It is not understood, say by Second-order
Cybernetics, that this might be a reasonable approach to conceptual description, it
isn’t a feasible and constructive approach for programming at all.

The chiastic approach, based on the proemial relation, is not only finite, constructive
and programmable but part of a construction language in contrast to a description lan-
guage. But it has its costs, too. We have to give up the uniqueness and homogeneity
of our mono-contextural notions. A discontextural gap between heterogeneous posi-
tions has to be accepted and to be bridged by transcontextural mediation. More at:

http://www.thinkartlab.com/lola/poly-Lambda_Calculus.pdf

http://www.thinkartlab.com/lola/poly-Lambda_Calculus.pdf

Chiasm of Deliberating Self-modification for Ruby(3)

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 99

Syntax of the language EFS(str(L))
The data structure (sorts) of EFS(str(L)) are character strings over an alphabet.
The alphabet consists of a non-empty set of symbols (letters). Words are defined over the
alphabet by the relation of concatenation. CONL is the 3-place relation consisting of all or-
dered triples <w1, w2, w3> where each of w1, w2 and w3 are words over L, and w3 is
the result of concatenating w1 and w2. str(L) is the data structure <L*, CONL>, where L is
an alphabet. The EFS language for this data structure is denoted EFS(str(L)).
An identifier is any string made up of letters from "standard" alphabet, A, B,..., Z of capital
letters together with the "brak" symbol, ’_’, and that does not begin or end with ’_’.
Variables are v, v’, v’’, The punctuation symbols are arrow –>, parenthesis (,) and com-
ma ,.
Terms of EFS(str(L)) are words of L* and variables.
Definition. If t1, ..., tn are terms, and IDENT is an identifier, then IDENT(t1, ..., tn) is an
atomic statement.
Definition. If S1, S2, ..., Sn is a list of atomic statements, and T is an atomic statement,
then S1 –> S2 –>...–> Sn –> T is a statement.
Definition. For an atomic statement T, we say T is in the assigned position in the statement
S1 –> S2 –>...–> Sn –> T, and also in the unconditional statement T itself.
Definition. A work space W consists of
(1) A specification domain, the objects we are talking about.
(2) A list of identifiers, designed as reserved.
(3) A specification of what relations the reserved identifiers represent.
 Relations represented by the reserved identifiers are the given relations of W.
The basic work space of EFS(str(L)) is:
(1) the domain L*, all words over the alphabet L.
(2) with the only reserved identifier CON.
(3) CON represents the concatenation relation on L, CONL.
Definition. We call a procedure statement acceptable (in a work space) if no reserved
identifier occurs in the assignment position.
Definition. Given a work space W. A procedure in W consists of two parts: a header and
a body.
The header of the procedure designates an unreserved identifier and a number.
The body of a procedure is any finite collection of statements that are acceptable in the work
space W.
Definition. Let W be a work space. Suppose we write a procedure in this work space W,
say
NAME (n):
(body of procedure NAME)."

Melvin Fitting, Computability Theory, Semantics, and Logic Programming,1987
Chiasm of reserved and produced words

The general practice is to start with a basic work space, then to enlarge it.
"In the work space we start with, the relations represented by reserved identifiers can be
assumed to be "given". (...) Then, starting with the basic work space, we write procedure
after procedure each one characterizing some additional set or relation. When we have
thus characterized a new relation, we can designate an identifier to represent it, as a new
identifier. The procedure we have written constitutes the specification of what this identifier
represents. In this way we produce a richer work space."

The main dichotomy of an EFS thus is established between the given reserved iden-
tifiers and the accepted statements of the work space. No accepted statement as a pro-
gram thus can change or modify the set of identifiers. Identifiers can only be introduced
by the designer of the EFS and this is at least in principle a human being and not a
program. And who ever is changing the set of pre-given words can do this only "out-
side" the running system. There is no limit in doing that.

Chiasm of Deliberating Self-modification for Ruby(3)

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 100

Reserved words can be added, eliminated, their implementation can be optimized,
and so on. But not while running. Simply not while running the system because its "run-
ning" is enabled exactly by the reserved words as its condition. Therefore a mono-con-
textural programming system is not able for principle reasons to change its own
definition. It is not able to change while running its list of reserved words. And a re-
implementation of those reserved words while defining the running system is impossi-
ble by definition, too. Thus, self-modification in an essential sense is not possible by
definition in the framework of EFS.

But this is exactly what we are looking for. What we need is essential self-modifica-
tion. Obviously, what we need is a contexture where the given identifiers are charac-
terized as parts of accepted statements, not involved in an endless hierarchy of meta-
languages but in a finite "circular" chiastic, that is, heterarchic distribution, co-existing
at once with the previous EFS where the identifiers are reserved terms.

Thus, I am not looking for a "Münchhausen" solution but for a solution of essential
self-referentiality, not on the base of the identity of the terms, but on the base of their
sameness. This allows a distribution of the same construction (identifier, work-space,
statements) over different contextural loci. And what is thematized as identifier of a
work-space in one contexture acts as a statement of another work-space based on oth-
er or similar identifiers. Between identifiers and work-spaces a chiasm, distributed over
different contextures, is installed. Identifiers and work-spaces occur in different contex-
tures representing different use of the terms identifier and work-space (statements).

With that in mind, a self-modification of a programming system, that is a modifica-
tion of its reserved words while running, has lost its magical circularity and has become
part of polycontextural programming. That is, poly-paradigms and chiastic interactions
between paradigms, enabling each other in their togetherness, are the new features.

Modeling the chiasm between work-space and identifier

Identifier Work-space

Work-space Identifier

EFS1

EFS2

thematize�chiasm work - space,�identifier 3()()

cchoose

contextures

identify

�

�

Ruby

work -

3()

()3

sspace

identifier

1.1

lambda

list

ele

�()
{ }

cct

identi

�work - space2.1

ffy

lambda

list

�

�

work - space

identifier

1.2

()
{ }

iddentify

lambda

li

�

�

work - space

identifier

2.1

()
sst

identify

{ }

�work - space2.2

llambda

list

elect

�

�

identifier

work -

()
{ }

sspace1.2

identify

lambda

�

�

work - space

i

3.3

ddentifier()
{ }

list

Distribution of Ruby as AOP and AOP as Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 101

15 Distribution of Ruby as AOP and AOP as Ruby
Different interpretations of the relations between Ruby as a programming language

and OOP/AOP as programming paradigms are possible. And without surprise, some
combinations of both kind of modeling are stepping onto the arena, too.

OOP and AOP and OOxAOP as Ruby

Ruby as OO and as AO and as AxO

Ruby as OO and AO and OOxAOP as Ruby

sketch

architecture

t

�

�

poly - paradigm

tabular -3

hhematize

identfy contexture

chose

�

�

�

OO,AO

Ru

()

bby

object

OOP

define

lambda

statements

�

�

{ }

elect

identfy contexture

chose

def

�

�Ruby

iine

lambda

statements

�

�

aspect

AOP

{ }

elect

identfy contexture

chose

define

�

�

�

Ruby

abbject

OOxAOPlambda

statements

�

{ }

elect

sketch

architecture

t

�

�

poly - paradigm

tabular - 3

hhematize

chose style

identfy co

�

� �

�

Ruby

OO

3()()

nntexture

define

lambda

statements

�

�

objects

OOP

{{ }

chose style

id

� �AO

eentfy contexture

define

lambda A

st

�

�

�

aspects

OP

aatements{ }

chose style

identfy con

� �

�

OxA

ttexture

define

lambda

statements

�

�

abjects

OxAP

{{ }

sketch

architecture

t

�

�

poly - paradigm

tabular - 3

hhematize

identfy contex

� ,� ,�

�

Ruby Ruby OxA1 2()
tture

chose

define

lambda

state

�

�

�

Ruby

object

OOP

mments

elect

{ }

[[]

identfy contexture

ch

�

oose

define

lambda

statements

�

�

�

Ruby

aspect

AOP

{ }}

[]

elect

identfy contexture

chose st

�

� yyle

define

lambda

statements

�

�

�

OxA

abject

OxAOP

{{ }

[]

elect

Distribution of Ruby as AOP and AOP as Ruby

 Rudolf Kaehr Februar 2, 2007 8/19/05 DRAFT From Ruby to Rudy 102

 A fragment of Ruby/Rudy

Conclusion: From Ruby to Rudy
Myth 2: AOP doesn't solve any new problems.
Reality: You're right -- it doesn't!

Nothing, surely has changed for AOP. You can’t solve any new problems, you also
can’t design new problem spaces with AOP, neither with OOP.

But all has changed dramatically for Ruby(m, n). Not only new problem spaces can
be designed and unknown problems (re)solved but also new programming paradigms
will be invented, designed and developed with the support of this very general frame-
work of programming. Thus, it shouldn’t be called Ruby(m, n) anymore, but Rudy(m, n).
Elsewhere I called it ConTeXtures.

Remembering Ruby’s Intro

To play the game a step further it should finally be understood that also trinity in the
Occidental Middle Age was a great deliberation from Greek dualism, today it is a se-
rious restriction and obstacle. Statement-based programming should evolve to a new
deliberated paradigm calligraphed in patterns and their thematizations. Thus, from
POP, OOP, AOP we should move, at least, to MAOPP (Morphogrammatic Aspect-Ori-
ented Programming Paradigm) to be prepared and to stay competitive to the Chinese
Challenge (George W. Bush).

sketch

archit

�poly - paradigm�repl,�repl,�id()
eexture

thematize

identif

�tabular - 3

Rudy�()()3

yy

identify

defi

�

�

contextures

contexture

3

1.1

()

nne

lambda

statements

�

�

objects OO

OOP

()

{ }

[]

elect

iden

1 2.

ttify

define

lambda

�

�

contexture

aspects AO
2.1

()
��

.

AOP

statements

elect

{ }

[]1 2

∅

identify

d

�contexture1.2

eefine

lambda

statements

�

�

objects OA

AOP

()

{ }

[]

elect

i

2 1.

ddentify

define

lam

�

�

contexture

aspects AA
2.2

()
bbda

statements

elect

�

.

AOP

{ }

2 11[]

∅

∅ ∅

identify�contexturee

abjects OxA

OOxAOP

3.3

define

lambda

statem

�

�

()

eents

elect

{ }

[]

Linearity of computational time

 Rudolf Kaehr Februar 2, 2007 8/18/06 DRAFT From Ruby to Rudy 2

Time and Computation
1 Linearity of computational time

Also the notion of time is according to Augustinus "A well known unknown", it has
developed in the history of alphabetism and logocentrism to a trivial truth, that time is
an absolute and linear ordered sucession of events in the modi "past", "present", "fu-
ture". That is: past –> presence –> future, short: V –> G –> Z.

Linearity of time goes close together with the basic structures of semiotics, arithmetic
and logic, i.e., concatenation, counting and deduction. Time structures are basic for
all kind of computation (Levin). Thus, a lot of research has been done to study all kind
of aspects of time from philosophical to logical and computational aspects of time.

http://www.vordenker.de/ggphilosophy/die_zeit_vgo.pdf
http://www.ingentaconnect.com/content/imp/chk/2005/00000012/00000003/

art00003
General temporal structure of computation

"Computations consists of events
and can be represented as graphs,
where edges between events reflect
various relations. [...] We will study
only synchonous computations. [...]
Nodes and edges will have attributes
called labels, states, values, colors,
parameters, etc. [...] Their nodes
have a time parameter. It reflects lo-
gical steps, not necessarily a precise
value of any physical clock. [...] Ri-
gid computations have an other node
parameter: location or cell. [...] Loca-
tions have a structure or proximity ed-
ges between them. [...] Combined
with time, it designates the event
uniquely.“ (Levin)

TM: Turing Machine, CA: Cellular
Automaton, PM: Pointer Machine.

On the base of this abstract con-
cept of computational space and
time, computational complexity can be introduced and studied.

Computational time and space
"The greatest depth DA(x) of a causal chain is the number of computation steps. The vol-

ume VA(x) is the combined number of active edges during all steps. Time TA(x) is used (de-
pending on context) as either depth or volume, which coincide for sequential models. SA(x)
of a synchronous computation is the greatest (over time) size of its configurations.“

L. A. Levin, Fundamentals of Computing, http://www.cs.bu.edu/fac/lnd/toc
http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-medium.pdf

Contextural computation cannot assume a homogenous time-space medium for its
computations. Changes of contextures are prior to continuations of states inside con-
textures and are creating a new, tabular kind of time-events and time-structures.

1

computation

events location

asyn synchronous

seq parallel

TM CA PM

configuration

Conceptual Graph

http://www.vordenker.de/ggphilosophy/die_zeit_vgo.pdf
http://www.ingentaconnect.com/content/imp/chk/2005/00000012/00000003/
http://www.cs.bu.edu/fac/lnd/toc
http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-medium.pdf

2 A time-matrix for complex object-schemes
After the introduction of complex object-schemes with all their different function-

alities as objects, aspects, abjects, injects, etc., questions about their temporality
are naturally arising. As a first step, characteristics of a time-matrix and contextu-
alizations of time-modi are sketched.

2.1 Temporal structures of cognitive systems
What happens temporally inside a computational system? How have we to de-

sign it that it can happen?
To get a complex temporal structure, a system has to offer a corresponding com-

plex computational structure. As a minimal condition, a cognitive system has to be
able to distinguish between itself and its environment and to map this distinction
into its inner environment. Its behavior has, additionally, to reflect the fact that it
itself is recognized as a part of an inner environment of another cognitive system
which is able to distinguish between itself and its environment and to map this dis-
tinction into its inner environment. A cognitive system has to realize this complex
relational structure at once. Thus a complex cognitive system is an interactional
and reflectional societal compound system. As such a cognitive system, it is devel-
oping a complexity of different temporal behaviors depending on its behavioral
structure.

Physical or simple systems (in the sense of Robert Rosen), like computational sys-
tems, don’t have an environment. They are, from the point of view of an external
observer, placed in an environment, but not having an environment; neither inner
nor outer environments.

Time as temporal succession

Each aspect of a complex entity has its own internal time-structure. The way the
aspects or functionalities are mediated is determining the mediation of the time-
structures, i.e., the interplay of different time dimensions, measures, rhythms, etc.
of the complex entity. Thus, the temporal functioning of a complex object in a com-
putational environment is depending on its mediational structure. This is producing
some restrictions in the combination of different temporal dimensions, but avoiding
chaotic constellations. Chaotic constellations appear as partial or total break
down of mediation. This has to be considered and studied for real-world constel-
lations. Not every mediation succeeds at the time needed.

Time as change of functionality

The change from one functionality (aspect) to another functionality (aspect) of a
complex object is defining an intrinsic time-structure. That one functionality can be-
come another one, say an object can become an aspect, and vice versa, defines
an intrinsic dynamic of the complex entity. Such a dynamic is intrinsically timing
(offering a time structure) the entity and its system. Thus, the more distinctions an
entity is realizing, say as object, aspect, abject, project, inject, etc., the more com-
plex, i.e., the more lively its behavior appears. That is, timing as an intrinsic tem-
poral dynamic is a chiastic interplay of the entity’s functionalities.

Time as a second-order category

Such time-mechanism, internal and intrinsic, are essential characteristics of the
behavior of interactional and reflectional computational systems. They are not ac-
cessible by external observations of the behavior of the system.

Thus, time is depending on the point of view and focus of an observer, internal
and external. And it is changing relative to the change of the point of view of the
observation. Computational time and timing is not the same as physical space-
time.

A time-matrix for complex object-schemes

 Rudolf Kaehr Februar 2, 2007 8/18/06 DRAFT From Ruby to Rudy 4

Time in temporal logic

These considerations have to be, at first, strictly separated from enquiries resulting in
modal logic based temporal logic (Manna, Pneuelli).

"In temporal logic, the interpretation given to the accessibility relation is that of the
passage of time. A state s is accessible from another state s’ if through a process in
time s can change into s’."

The proposed studies I am sketching are dealing with time and timing (Zeitigung)
and not with the change of states in time. The common approach in logic and computer
science is presuming time as such and is studying what happens to the states of a sys-
tems in such a succession of time. Time in this sense is a kind of physical time, which
is a property of an external description of the behavior of the system under observa-
tion. The notion time, then is classified as linear or branching.

"We may distinguish between two notions of time: branching time temporal logic, and
linear time temporal logic. In branching time temporal logic, we view time as having a tree-
like nature inn which, at each instant, time may split into alternative courses representing
different possible futures. In linear time temporal logic, we view each moment as having only
one possible future corresponding to a history of the development of the system." Jonathan
S. Ostroff, p. 155

Also formalized, the temporal basics of past/present/future are kept on. A state s is
before or after a state s’, independent of linear or branching time. But depending on
a temporal measure. Other topologies of temporal time structures are not denying this
basic order. http://plato.stanford.edu/entries/logic-temporal/

2.2 General tabular time-matrix
Computational systems, in the common sense, are similar to physical systems. They

they are running in the framework of an observer independent time concept. It is pos-
sible, theoretically, to identify, but also to separate, each single state of the system from
its successor or predecessor state. In contrast, complex or cognitive computational sys-
tems are much more shaped by holistic and emergent properties. Thus, time in such
systems is not a linear succession of states or events but a complex chiastic interplay
of interacting and reflecting parts.

We can mirror this situation to similar properties of living systems.
According to Langton (1989),

Linear systems obey the superposition principle since they are decomposable into inde-
pendently analysable components and composition of understanding of the isolated compo-
nents leads to full understanding of the system. The principle does not hold for non-linear
systems since in this case, primary behaviours of interest are properties of the interactions
between components as contrasted with properties of the components themselves; isolating
the components necessarily leads to the disappearance of interaction-based properties.

A first and simple step to such an interplay of aspects of time can be considered as
a time-matrix of the reflected modi of time, "past", "peresent", "future". This kind of
reflection follows the as-abstraction.

Classical time modi are in the is-abstraction: X is X. That is, a state in the past is a
state in the past. Such a state of the past remains a state of the past; it can not become
involved in a future. The is-abstraction is an operation of identification and not of inter-
pretation or thematization. Thus, this notion of time is strongly related to the ontology
of states and time is state depending. There is no structural space for time as such.

http://plato.stanford.edu/entries/logic-temporal/

Reflected time-modi

GG: presence as presence: now (Jetzt)
GV: presence as past: retro (Rückbesinnung)
GZ: presence as future: design (Entwurf)

VV: past as past: past (Gewesene, Vergangene, Vergangenheit)
VG: past as presence: tradition, inheritance (Tradition)
VZ: past as future: interpretation, re-definition (Umdeutung)

ZZ: future as future: future (Künftige, Zukunft)
ZG: future as presence: arrival, event (Ankunft, Heraufkunft)
ZV: future as past: plan, design (Entworfene, Beikunft)

VGZ-time matrix
The time-matrix is representing the contextuality of the 3
time modi, past, presence and future, in their dependen-
cies. But, as a first step out of the linearity of the classic un-
derstanding of time, only a 2-dimensional inter-relation is
introduced. The 2-dimensionality is modeled along the as-
abstraction: X as Y.
With the time-matrix a tabular notion of time is conceptu-

alized. The classic linearity of time is preserved in the time-matrix as the diagonal
structure of the matrix. Connections to possible temporal modi in grammars of nat-
ural languages are not yet considered in this proposal.

Contextualized time-modi

Time-modi as view-points to characterize the relationship between time-modi.
As a time-mode can be characterized as it is, past is
past, and time-modi can be reflected as being differ-
ent, past as future, the relationship between different
time-modi can be characterized from the point of view
of other time-modi, e.g., the past-present relationship
from the position of the future, etc. Thus, changes in

the relationship between time-modi can be founded by their contextualization, i.e.,
by its internal or immanent view-points of description. That is, from the point of
view of the past, the structural relation between future and present in respect of its
relevancy can change. If, from the view-point of past, future was dominant, it can
change to an inverse order. And future may be in different constellations relative
to the present and to the past. From the past, future in future/present may be rele-
vant. But future in the relation future/past may not be relevant from the view-point
of present. Thus, the common linearity of the time-modi is transformed by contex-
tualization. In other words, the Present can be understood as the difference be-
tween the Past and the Future, as well the Future as the difference between Past
and Present, and the Past as the difference between Future and Past. Thus, time is
understood as modi of differences and not as the temporality of events or objects.

Multi-dimensional time-matrix

The contexturalization of the time modi has not to be restricted to a 2-dimension-
al matrix of the as-abstraction X as Y is Z. That is, past as future, future as present,
etc. More complex matrices can be introduced on the basis of more complex as-
abstractions. This is also including combinations of time-modi, like the future of
(past and present), etc.

The presence of (the presence, the past and the future)
The past of (the presence, the past and the future)
The future of (the presence, the past and the future).

TM V G Z

V VV VG VZ

G GV GG GZ

Z ZV ZG ZZ

Future

Past Present

A time-matrix for complex object-schemes

 Rudolf Kaehr Februar 2, 2007 8/18/06 DRAFT From Ruby to Rudy 6

2.3 Classification of temporal events
Without doubt there are other types of classification of temporal events possible than

the classic "past-presence-future" approach. Depending on language, notational sys-
tems and cultural tradition classifications beyond the Greek model are possible.

The modi of time are depending on the complexity of the involved reflectional/inter-
actional systems. There is no time out there without a thematization and interpretation
of the world by a living system. Time is an aspect of thematization of the world and not
an absolute attribute to the events of the world. An absolute, relativistic or not, under-
standing of time and space occurs as a reduction of the complex thematization of time.
In a world without reflectional agents an objective linear time notion is appropriate,
say for chronology and other measurement of non-living systems. Thus, the restriction
in this contemplation to triadic-trichotomic structures in semiotics, logic and time modal-
ities, is only an introductory and temporal restriction, without systematic value.

Full time-structure of a computational system

The full time-structure of a computational system, thus, has to realize, at once, its in-
ternal and its external modi of timing. This can be observed and described by a "dou-
ble" action of observation and inscription, only.

How much it is still a problem to think such a "double science" to understand the
simultaneity of system and environment, i.e., the system-environment coupling, is wit-
nessed by the following paragraph:

However, this description is incomplete since only the topology (structure) of the system-
environment coupling has been specified. In order to complete the description it is necessary
to define each component and each relation. Furthermore, as Heylighen (1993) states, "no
absolute distinction can be made between internal and external, that is, between system and
environment. What is`system' for one process is `environment' for another one." (p.3)
Hence, the system-environment coupling relations are relativistic irrespective of whether the
relativism is functional (ontological) or observational (epistemological).

S.M. Ali, R. Zimmer, Discourse On Emergence: Part I. (Foundations)
mcs.open.ac.uk/sma78/disc_1.pdf

Who wants an "abstract distinction"? From which point of view could it be estab-
lished? Would it then still be abstract? Whatever "relativistic" means, the description,
"What is`system' for one process is ̀ environment' for another one.", makes the chiastic
interplay between system and environment, depending on different positions, clear
enough to be modeled and formalized in a polycontextural setting. As a further step
of reflection, the interplay of system and environment itself can be considered, and
named in this specific context, an abstract distinction. Thus, the abstract distinction is
constructed as the process of mediation between system and environment.

